
Scheduling BoT Applications in Grids using a

Slave Oriented Adaptive Algorithm?

Tiago Ferreto1, César De Rose1, and Caio Northfleet2

1 Faculty of Informatics - PUCRS, Brazil
ferreto@inf.pucrs.br, derose@inf.pucrs.br

2 HP-Brazil
caio.northfleet@hp.com

Abstract. Efficient scheduling of Bag-of-Tasks (BoT) applications in
a computational grid environment reveals several challenges due to its
high heterogeneity, dynamic behavior, and space shared utilization. Cur-
rently, most of the scheduling algorithms proposed in the literature use
a master-oriented algorithm, in which the master is the only responsible
for choosing the best task size to send to each slave. We present in this
paper a different approach whose main originality is to be slave-oriented,
i.e. each slave locally determines, from a set of initial runs, which work-
load size is more adapted to its capacities and notifies the master of
it. Finally, we show some measurements comparing our algorithm with
other three well-known scheduling algorithms using the SimGrid toolkit.

1 Introduction

Computational grids as a platform to execute parallel applications is a promising
research area. The possibility to allocate unprecedent amounts of resources to a
parallel application and to make it with lower cost than traditional alternatives
(based in parallel supercomputers) is one of the main attractives in grid com-
puting. On the other hand, the grid characteristics, such as high heterogeneity,
complexity and wide distribution (traversing multiple administrative domains),
create many new technical challenges. In particular, the area of scheduling faces
entirely new challenges in grid computing. Traditional schedulers (such as the
operating system scheduler) control all resources of interest. In a grid, such a
central control is not possible. First, the grid is just too big for a single entity
to control. In a grid, a scheduler must strive for its traditional goals, improving
system and application performance [1].

Bag-of-Tasks (BoT) applications are parallel master/slave applications whose
tasks are independent to each other. A vast amount of work has been done
in order to schedule efficiently Bag-of-Tasks applications improving the load
balancing in distributed heterogeneous systems. Most of the algorithms focus
on the adaptation of the workload during the execution, using either a fixed
increment or decrement (e.g. based on an arithmetical or geometrical ratio) or a

? This research was done in cooperation with HP-Brazil.

more sophisticated function to adapt the workload. Yet the solutions presented
are all based on some evaluation by the master of the slaves’ capacities and of
the tasks workload. This implies a significant overhead since the master has to
maintain some kind of information about its slaves.

We propose in this paper the scheduling of BoT applications in Grids with a
different approach whose main originality is to be slave-oriented, i.e. each slave
locally determines, from a set of initial runs, which workload is more adapted
to its capacities and informs the master of it. In turn, the master can compare
the workload demanded by the slave to the network penalty paid and make the
proper adjustments to adapt the workload. We have thus a workload adaptive
algorithm.

2 Related Work

In this section we focus in self-scheduling algorithms [2]. These algorithms divide
the total workload based on a specific distribution, providing a natural load
balancing to the application during its execution. This class of algorithms is
well suited for dynamic and heterogeneous environments, such as grids, and for
divisible workload applications.

The Pure Self-scheduling [2] or Work Queue scheduling algorithm divides
equally the workload in several chunks. A processor obtains a new chunk when-
ever it becomes idle. Due to the scheduling overhead and communication latency
incurred in each scheduling operation, the overall finishing time may be greater
than optimal [3].

The Guided Self-scheduling algorithm [4] (GSS), proposed by Polychronopou-
los and Kuck, and Factoring [3], proposed by Flynn and Hummel, are based on a
decreasing-size chunking scheme. GSS schedules large chunks initially, implying
reduced communication/scheduling overheads in the beginning, but at the last
steps too many small chunks are assigned generating more overhead [2]. Factor-
ing was specifically designed to handle iterations with execution-time variance.
Iterations are scheduled in batches of equal-sized chunks. The total size of the
chunk per batch is a fixed ratio of the remaining workload.

In all algorithms shown above, the amount of workload sent to each slave is
defined by the master. We propose in the following section another approach,
where the evaluation of the load to be assigned to each slave is done by the slave
itself.

3 Local Decision Scheduling Algorithm

The local decision scheduling algorithm (LDS) addresses BoT applications us-
ing divisible workloads, i.e. all independent tasks demands the same amount of
computational resources. The algorithm focus on a heterogeneous, dynamic and
shared environment, characterizing a typical computational grid. It is based on
a distributed decision mechanism, building in each slave a performance model,
which represents the application behavior based on resources utilization. Each

slave computes the task received, includes this information in its performance
model and, based on the analysis of its performance model, calculates the best
workload size to be computed at the next iteration.

The scheduling algorithm is divided in the following phases: setup, adaptive
and finalization phases. The setup phase goal is to initialize and refine the per-
formance model of each slave. The master sends tasks to slaves using a fixed
quadratic increment. This process continues until it receives a signal from the
slave in order to start the adaptive phase. This signal is generated when the
performance model starts presenting estimates with minimum error.

The adaptive phase goal is to adapt this performance model if any variation is
observed and to generate appropriate estimates of workloads size to be computed
in the next iterations. The master side of the algorithm for the adaptive phase is
presented in Algorithm 1. It sends to the slave a task using the fixed quadratic
increment again, but at this time, it includes information about the time slice the
slave has to compute at the next iteration (execTime) variable). This information
is highly dependable on the application characteristics, workload (number of
tasks), and environment conditions, and is currently static and manually defined.
The master receives, after the processing of the task by the slave, the result,
execution time of the task computed and an estimation of the next workload
size in order to accomplish to the time slice defined at the master. At the next
workload assignment for the slave, the master just changes the workload size to
send to the slave accordingly to the estimate previously received. It keeps using
this procedure until it reaches a specified limit (line 4). After this, it starts the
finalization phase.

The slave side of the algorithm for the adaptive phase is presented in Algo-
rithm 2. The slave starts a loop receiving tasks to be computed. Together with
the task, it receives the workload size and execution time values. The workload is
computed and its size with execution time inserted in a prediction table, which
is used to compute the performance model. Using this prediction table and the
execution time value received from the master, it computes the next workload
size. After that, the slave sends to the master the result, execution time of the
task received, and an estimation of the next workload size. The slave gets out
from the loop when it receives a signal message from the master to initiate the
finalization phase.

The finalization phase adjusts the workloads size computed in each slave in
order to achieve load balancing, resulting in a better overall performance. When
the master switches from the adaptive phase to the finalization phase, it stops
using slaves’ predictions and starts using the factoring algorithm till the end of
tasks processing. After assigning the remaining tasks, the master starts a loop
receiving the remaining results from the slaves.

3.1 Local Prediction of the Computational Load

In order to estimate the most suited workload, a slave needs a performance model
for the execution of chunks of size taskSizei. The model may include various
data such as the execution time, memory utilization, cache access, etc, used to

Algorithm 1 LDS algorithm at master side

1: while there are tasks to schedule do

2: for each available slavei do

3: execTime ⇐ maxExecTime

4: if
∑

numslaves

i=1
taskSizei ≥ number of tasks remaining then

5: start finalization phase
6: else

7: task ⇐ getTask(taskSizei)
8: send to slavei the task, taskSizei and execTime

9: end if

10: end for

11: receive result, execTime and nextTaskSize

12: taskSizei ⇐ nextTaskSize

13: end while

Algorithm 2 LDS algorithm at slave side

1: while there are tasks to compute do

2: receive task, taskSize and maxExecTime

3: result ⇐ compute task

4: insertPredictionTable(taskSize, execTime)
5: nextTaskSize ⇐ predictNextSize(maxExecTime)
6: send to master the result, execTime and nextTaskSize

7: end while

process a given task. In this preliminary version of our prototype we only take
into account the execution time.

Given some N values taskSize1, taskSize2, . . . taskSizen and the slaves data
t (e.g. the execution time) the slave has to estimate t(taskSize). In a multi-
parameter model we could use algorithms such as the Singular Value Decompo-
sition [5], one of the most robust for data modeling. It would fit the function t

as a linear combination of standard base functions (e.g. x → ex,
√

, polynomials,

. . .).
Yet in the case where t only depends on the processor’s speed, an affine

model of the time required vs. the number of chunks to run is most realistic
and used by other algorithms [6]. The modeling problem is therefore a basic
linear interpolation problem of the measured running time tj, j = 1 . . . n vs.

the number of chunks taskSizej. Beside the estimated coefficients a, b of the
affine approximation t = a + b × taskSize, the correlation coefficient is used
to determine the correction of the interpolation and thus decide if more chunks
should be sent in the initial phase, before entering in the adaptive phase.

The interpolation algorithm is very fast and thus does not prejudice the
execution of the application. Moreover, it is trivial for a slave to determine the
adapted task size, given the execution time t it has to run and the affine model
(a, b). Note that in the case of a more complex, non-linear model, it would have
to use a more time-consuming algorithm such as a gradient or dichotomic search
to solve the t = f(taskSize) equation.

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Processing quantity (MFlops)

64 nodes

Work Queue
GSS

Factoring
LDS (5)

LDS (20)

 300

 400

 500

 600

 700

 800

 900

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Processing quantity (MFlops)

90 nodes

Work Queue
GSS

Factoring
LDS (5)

LDS (20)

Fig. 1. Measurements scheduling 1000 tasks using 64 and 90 nodes.

4 Evaluation

We used the SimGrid [7] toolkit to evaluate our scheduling algorithm. The plat-
form used for simulation is an example of grid model included in the SimGrid
package. The model is composed by 90 heterogeneous machines connected by
several links with different latency and bandwidth values.

We used this platform to simulate applications with different number of tasks
(1000, 10000 and 100000 tasks) and quantity of computation per task (100,
500, 1000 and 2000 MFlop/s) using deployments with 64 and 90 nodes. In our
experiments we assumed that communication costs to send one task to a slave
is fixed (0.001 Mbyte/s) and to receive the result is irrelevant.

Each simulated application was executed using 4 different algorithms: Work
Queue, Guided Self-scheduling, Factoring (using α = 2) and LDS (using β = 5
and 20). LDS uses the β value to compute the maxExecT ime parameter, which
is calculated dividing the estimate of the total execution time to compute all
tasks sequentially by β multiplied by the number of slaves.

Figure 1 illustrates the measurements obtained for an application containing
1000 tasks begin executed in 64 and 90 nodes of the platform, with compu-
tation amount per task varying from 100 to 2000 MFlop/s. Using 64 nodes
and computation quantity ranging from 100 to approximately 800 MFlop/s, the
GSS algorithm presented the best results, after 800 MFlop/s the Factoring al-
gorithm overcomed GSS. The same behavior is presented with 90 nodes, except
that this transition is observed when computation quantity is approximately
1400 MFlop/s. The Work Queue algorithm presented the worst results in both
simulations. The LDS algorithm presented a behavior similar to the Factoring
algorithm in both simulations.

In Figure 2 the same measurements are presented for an application with
10000 tasks. The Work Queue algorithm presented again the worst results using
64 and 90 nodes. GSS, Factoring and LDS(5) presented similar values using low
computation quantity (100 MFlop/s) and 64 nodes. Using tasks with more than
400 MFlop/s the LDS(5) and LDS(20) presented the best results. Using 90 nodes

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Processing quantity (MFlops)

64 nodes

Work Queue
GSS

Factoring
LDS (5)

LDS (20)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Processing quantity (MFlops)

90 nodes

Work Queue
GSS

Factoring
LDS (5)

LDS (20)

Fig. 2. Measurements scheduling 10000 tasks using 64 and 90 nodes.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Processing quantity (MFlops)

64 nodes

Work Queue
GSS

Factoring
LDS (5)

LDS (20)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Processing quantity (MFlops)

90 nodes

Work Queue
GSS

Factoring
LDS (5)

LDS (20)

Fig. 3. Measurements scheduling 100000 tasks using 64 and 90 nodes.

and computation quantity ranging from 100 to approximately 200 MFlop/s the
GSS algorithm presented the best results. Factoring behaved better from 200 to
approximately 600 MFlop/s and after 600 MFlop/s, the LDS(5) and LDS(20)
algorithm overcomed the other 3 algorithms.

The measurements for 64 and 90 nodes using an application with 100000
tasks (Figure 3) are very similar. The LDS algorithm presented the best results
for all experiments and overcomed the Factoring algorithm in approximately
30%, i.e. the execution time of the application using the LDS algorithm was
approximately 30% faster in comparison to the Factoring algorithm.

The measurements show that simple algorithms, such as, GSS and Factoring
present good results when the total number of tasks and the computation quan-
tity per task is low. With a higher number of tasks and computation quantity
the LDS algorithm performs better, obtaining in some cases, a reduction of 30%
in the execution time in comparison to the Factoring algorithm.

5 Conclusion and Future Work

In this paper we proposed a slave oriented adaptive algorithm for the scheduling
of BoT applications in Grid environments. In this approach, each slave of a BoT
application locally determines, based on a data modeling algorithm to evaluate
its computational capacity on a received task, which workload is more adapted
to its capacities, sending this information to the master. The main characteristic
of our algorithm is that the computation of the best suited task size is entirely
distributed, unlike other adaptive approaches.

We compared our algorithm with other well-known scheduling algorithms us-
ing the SimGrid toolkit and preliminary results indicate that this new approach
behaves better in several of the test cases. The best results where obtained when
the number of tasks is high (100000 tasks), the computation amount of each
task is also high (1000 and 2000 MFlop/s), and the Grid is composed of several
heterogeneous resources (90 nodes) resulting in a mean performance increase of
approximately 30% over the Factoring algorithm.

The main limitation of our algorithm currently lies in the modeling of the
slave’s capacities to treat the master’s tasks. We intend to improve the data
modeling and the possibility to extrapolate the model for values of the workload
that could be less regular. In this initial work the slave only evaluates its CPU
performance. A direct extension of the algorithm would be to include a local
evaluation of the slave’s memory usage. We also face the inclusion of a historical
log maintained by the slave about its availability so as to let it require a workload
most adapted to the time-frame it knows it can work for the master.

Nevertheless we believe this novel approach is promising and already a very
good alternative to be considered when a scheduling algorithm is needed for BoT
applications in Grids.

References

1. da Silva, D.P., Cirne, W., Brasileiro, F.V.: Trading cycles for information: Using
replication to schedule bag-of-tasks applications on computational grids. In: Euro-
Par 2003. Volume 2790 of Lecture Notes in Computer Science., Springer (2003)
169–180

2. Chronopoulos, A.T., Andoine, R., Benche, M., Grosu, D.: A CLass of Loop Self-
Scheduling for Heterogeneous Clusters. In: Proceedings of CLUSTER’2001. (2001)

3. Hummel, S.F., Schonberg, E., Flynn, L.E.: Factoring: A Method for Scheduling
Parallel Loops. Communications of the ACM 35 (1992) 90–101

4. Polyhronopoulos, C.D., Kuck, D.: Guided Self-Scheduling: A Practical Scheduling
Scheme for Parallel Supercomputers. IEEE Trans. on Computers 36 (1987) 1425–
1439

5. Press, W.e.a.: Numerical Recipes in C: The Art of Scientific Computing. Number
ISBN 0521431085. Cambridge University Press (1993)

6. Beaumont, O., Legrand, A., Robert, Y.: Scheduling divisible workloads on hetero-
geneous platforms. Parallel Computing 29 (2003) 1121–1152

7. Casanova, H.: Simgrid: A toolkit for the simulation of application scheduling. In:
Proceedings of the IEEE Symposium on Cluster Computing and the Grid (CC-
Grid’01). (2001)

