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Abstract

As the adoption of grid computing in organizations exparids,need for wise utilization
of different types of resources also increases. A vola@igource, such as a desktop com-
puter, is a common type of resource found in grids. Howewanguefficiently other types
of resources, such as space-shared resources, reprebgmarhllel supercomputers and
clusters of workstations, is extremely important, sincgythan provide great amount of
computation power. Using space-shared resources in grits straightforward since they
require jobs to a priori specify some parameters, such asatlbn time and amount of
processors. Current solutions (e.g. GRAM) are based onxplcie definition of these
parameters by the user. On the other hand, good progressebasnfade in supporting
Bag-of-Tasks applications on grids. This is a restrictedlehof parallelism on which tasks
do not communicate among themselves, making recoverimg fadures a simple matter
of reexecuting tasks. As such, there is no need to specifyxenmian number of resources,
or a period of time that resources must be executing the agtjgln, such as required by
space-shared resources. Besides, this state of affairs inkhérd for Bag-of-Tasks appli-
cations running on grid to leverage from space-shared reesuThis paper presents the
Explicit Allocation Strategy, in which an adaptor autoroatiy fits grid requests to the re-
source in order to decrease turn-around time of the aplicatVe compare it with another
strategy described in our previous work, called Transpak#iocation Strategy, in which
idle nodes of the space-shared resource are donated tadhAgwe shall see, both strate-
gies provide good results. Moreover, they are complemgritathe sense that they fulfill
different usage roles. The Transparent Allocation Stsagsmbles a resource owner to raise
its utilization by offering cycles that would otherwise gasted, while protecting the local
workload from increased contention. The Explicit AllocatiStrategy, conversely, allows
a user to benefit from the accesses she has to space-sharedtessn the grid, enabling
her to natively submit tasks without having to craft (timeygessors) requests.

Key words: Computational Grids, Resource Management, Space-shasalRes,
Bag-of-Tasks
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1 Introduction

Grid computing has enticed many with the promise to allocaierecedented a-
mounts of resources to a parallel application, and to makétlit lower cost than
traditional alternatives (based on parallel supercomplfé—4]. However, not all
parallel applications are equally suited for executiornridg) Bag-of-Tasks is an ap-
plication model that is especially suitable for executiogiids since itis composed
of several uniprocessor tasks, that demand no commumoddiong its execution,
tolerating network delays and faults. These charactesis#icilitate the utilization
of volatile resources in the grid, i.e., computational teses that join and leave the
grid with no previous notice, have unknown and varying powed may return in-
correct results. In order to achieve good performance \Wightype of resource, an
eager scheduler [5-7] can be used. It uses task replicatimterate computational
power variability without relying on resource performaticeecasts.

However, space-shared resources do not match well withehieition of volatile
resources, thus making it very hard for a scheduler thata@gp®latile resources
to use space-shared resources. This is unfortunate begpaise-shared resources
(such as parallel supercomputers and clusters of workietgtare among the most
powerful resources available in a grid, and could greatfyeeite the execution of
BoT applications.

Space-shared resources are used through a formal job sikmis the resource
scheduler specifying the number of processors needed arhtbunt of time these
processors should be allocated to the incoming job. Thisyddmission interface
becomes a problem for grid users to execute their looselpleduapplications
using space-shared resources. Besides, eager schedalexst arepared to craft
such kind of request, since they assume that all they have ie th send a task
that may eventually be executed by the resource. The cusanto make space-
shared resources available to eager schedulers consitkegating the formal job
submission to the user. However, this approach presentstarg performance and
scale limitations considering that a grid may contain maiffemnt space-shared
resources.

We present in this paper the Explicit Allocation Strategliat aims at using space-
shared resources efficiently in a grid. It uses heuristiesitomatically craft formal

space-shared requests from grid-brokers’ requests i tgwovide resources to
grid users. This strategy is related to our previous work aiormated strategies
for using space-shared resources in grids called the TaamspAllocation Strat-

egy [8]. The goal of this strategy was to use opportunistimgoting techniques
providing idle resources from space-shared resourcesdaugers.

1 cesar.derose@pucrs.br
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It is important to realize that these strategies are comgigary, in the sense that
they play very different roles within a grid. The Transpdr@tiocation Strategy
enables a resource owner to raise its utilization by ofteoycles that would oth-
erwise go wasted, while protecting the local workload frevoréased contention.
Clearly, a job running opportunistically via the Transpdmllocation Strategy has
lower quality of service than a space-shared job (i.e., omelwspecified a formal
(time, processors) request). Moreover, not all jobs caretiteitom opportunistic
resource with the same ease. But, still, such resourcesecaarip useful for Bag-
of-Tasks applications.

On the other hand, a user of a Bag-of-Tasks application nsylave access to a
number of space-shared resources within the grid, and stjet nveint her job to
run faster than “opportunistically”, taking advantagelwd better quality of service
her formal requests enjoy. However, different space-shasources have dissim-
ilar characteristics, and she does not want to manually cegiuests for each of
these resources. She only wants to run her job at the highestiossible, us-
ing whatever space-shared resources she can access, asWwdihtever oppor-
tunistic resources become available. The Explicit AllcoaStrategy allows her to
transparentlybenefit from space-shared resources she can access, grialito
natively submit tasks without having to craft resourceesfjie (time, processors)
requests.

Both strategies were implemented in OurGrid [9] and vaédatsing different sim-
ulation scenarios. Our analysis conclude that the twoegjias are complementary,
providing two distinct qualities of service, relying on spashared resources uti-
lization characteristics and policies.

The rest of this paper is organized as follows: Section 2gmsshow space-shared
scheduler works and some issues related to its utilizahogrids. Section 3 de-

scribes the Transparent Allocation Strategy, whereasdedtevaluates the Ex-

plicit Allocation Strategy. Section 5 presents a comparisbboth strategies and
an analysis of using both strategies together. Finallyti@®6 presents our conclu-
sions and future work.

2 Space-shared resources

Space-shared resources, such as distributed-memoryepangbercomputers or
clusters of workstations, are high-end machines designedpport the execution
of parallel applications, promoting its performance. Iistarchitecture, a parallel
application receives a dedicated partition of resourcegXolusive utilization. In
order to obtain this partition, it is necessary to performmatal request specifying
p, the number of processors to be allocated to the applicadiwir, the time re-
guested for the execution of the application. This requeseént to a space-shared



resource scheduler, which manages the space-sharedaesoul provides the ac-
cess to a dedicated set of resources.

There are a handful of space-shared resources schedutezattuin production.
These include Easy [10], PBS [11], Crono [12] and Maui [13jextulers. In prac-
tice, however, the behavior of such schedulers varies fiitarts site. Even when
the same scheduling software is used, each site configar@siit policies, causing
the behavior of their schedulers to differ. Therefore, wedusonservative back-
filling approach as a good representative of today’s scleesland as a scheduler
that is accepted to attain good performance [14, 15]. The mdgia is an arriving
job is inserted into the first queue hole it fits. If the first jalihe queue cannot be
executed because there are not enough processors, thelsctseeeeps the queue
looking for the first request that (i) can be executed withientravailable resources
(free processors) and (ii) does not delay the start of anyinahe queue. Such
approach guarantees predictability, giving an upper-ddarthe job completion.

Regarding the utilization of space-shared resources slsgdommonly, request
submissions to the grid for resources are not performed allgry users. Instead,
discovering grid resources and submitting user’s tasksuah sesources is per-
formed by grid schedulers [16] (typically, grid brokersgually implementing an
eager scheduling policy. Currently, examples of grid salexd include Condor-
G [17], Nimrod/G [18], GridWay [19] and MyGrid [20]. These sgms perform
task scheduling using some heuristic in order to optimizeapplication overall
execution. Due to the variety of space-shared resourcegiiid gand the diversity
of interfaces provided by each scheduler, it is necessangé¢oan adaptor in the
grid, which provides a standard interface to the grid uset,@nverts the request,
with number of processors and time, to the format specifiethbychosen sched-
uler. GRAM (Grid Resource and Allocation Management) [21durrently the best
known implementation of such approach, due to the widespuéhzation of the
Globus Toolkit [22] to build grids.

However, the problem is that in the grid, users of BoT appilices do not want
to (in some cases, cannot) determine the number of proceasdrtime to be re-
guested. In this case, techniques such as performance $1{@8¢kand prediction
models [24, 25] can be used. However, while the later one doesnake possi-
ble supplying a precise model for complex applications,ftrener one requires
an underlying software structure which is not always awéao the prediction
software.

Moreover, grid schedulers assume that all they need to dossnd a task to be
executed in an available resource. Note also that the ghiededer should not de-
mand an explicit space-shared request from the user. Tiypiaayrid may contain

many resources unknown to the user and user’s runtime g¢esrage notoriously
bad even when accessing homogeneous and known resourcgagiessupercom-
puter [26—29]. Thus, it is inappropriate to ask the user torege runtime (a key



element of the request) in grid systems, as their resoureekederogeneous and
unknown to the grid user.

The overcome such problems, the next sections present ttwmated strategies
to enable grid users to use space-shared resources in pipdicadions. Section 3
presents the Transparent Allocation Strategy and Sectipregents the Explicit
Allocation Strategy.

3 Transparent Allocation Strategy

One of the challenges in grid computing is: "How to convinoenputing centers
with large amount of machines to donate their resources talardrastructure?".
The main excuses to not join a grid include: security prolslehgher manage-
ment costs, difficulty to manage and also account resouilcaation by grid users,
among others. However, the main impact is observed in Iaeisu Tipically, users
of large computing centers face the problem of sharing hegfopmance resources
with other local users. This usually results in delays, imteof hours, or even days,
to obtain the necessary resources. Enabling grid usersoicate these resources
can increase even more this delay, resulting in more disodmient of local users.

Despite the long queue resulted from local users requésse are usually sev-
eral fragments representing unused resources, that caubé in the queue. The
amount of fragments is highly dependent on resources angeses) characteris-
tics. For example, the Horseshoe Bewolf cluster from theigla@enter for Sci-

entific Computing presents an average idleness of 10%, whmtesents 80 CPU
cores [30]. Instead of just losing this amount of computagower, it can be easily
donated to the grid, without harming local users. Besid@seat grid applications,
more specifically BoT applications, don not need the sameagiees of dedicated
resources and time, as parallel applications executinganesshared resources.

The Transparent Allocation Strategy [8] is based on an igldes exploitation
mechanism, i.e., when the space-shared resource is nptdildicated by local
users, all remaining processors are transparently domatde grid. The strategy
prioritizes local users in behalf of grid users in relationtihe guarantees for re-
source exclusive utilization, while simplifies resourceess by grid users. This
simplified access results from the utilization of spaceathaesources as regular
volatile ones.

Grid users access processors not in use in the space shsoedceethrough a grid
scheduler, as made for regular volatile resources. Theepsacs are not exclusively
allocated to the grid user, i.e., there is no guarantee aheuamount of time that
the resource will be available to the grid. When a local usgquest needs to use
processors being donated to the grid, the space-sharadcesctheduler preempts



and aborts all grid tasks being executed, in order to coraythet local user’s re-

guest, and removes the processors from the list of availastaurces in the grid.

The grid scheduler handles this situation as a regular psocdault, and schedules
the aborted tasks to other available resources as usual.

One of the main goals of this strategy is the transparencyidiugilization to local
users. Local users are not aware of resources utilizatiogriolyusers, since grid
users do not perform a formal allocation of resources, aagpthcessors donated

to the grid are presented as idle in the space-shared resoscbeduler queue.
The strategy also does not change how local users use therecesoThey still
need to allocate resources performing an explicit requastifying the amount

of processor®, and timetr needed. If the local user request needs processors in
use by grid users, then the grid tasks are aborted in thesegsors, and they are
removed from the list of available resources, as explaimddrb.

The implementation of the Transparent Allocation Stratesguires a loosely cou-
pled integration between space-shared resource schedalgrid scheduler. In or-
der to facilitate this integration, both components neeprtwvide open interfaces.
The main issues regarding the grid scheduler include: &direy available pro-
cessors, removing "faulty” processors and aborting gségaln the space-shared
resource scheduler side, the main issue is simplify thessced execution of tasks
in the available processors.

One implementation of the Transparent Allocation Straisdlye CronoGuMP [8].
It interacts with the Crono [12] cluster resource manageurgter to provide re-
sources to the OurGrid [9] Community, which consists of saveniversities and
research centers from Brazil [9, 31]. Figure 1 presents @&uMP. It is connected
to Crono in order to identify when there are idle nodes thatlwa donated to the
grid, and when local users want to use local resources, &r todake the resources
off the grid. Resources can be in two states: being used lay lsers (marked with
L in the figure) or by grid users (marked with G in the figure). &dha resource
is released (marked with R in the figure), CronoGuMP staesQbrGrid’s agent
module, called UserAgent (UA), on each released resouncee Gtarted, the User-
Agent contacts the OurGrid Peer to inform their availapilénd the Peer makes
these resources available to grid users.

When a local user requests resources (marked with A in theefigGronoGuMP

deactivates the UserAgent on each resource being allocatea the UserAgent is
disabled, the resources are ready to be used. It is not r@gdaesnform the Peer
about the change, as the Peer itself keeps track of grid resoavailability. Thus,

it will detect the resource loss and will remove it from theaerce pool.

Results presented in [8] show that the Transparent AllondStrategy is particu-
larly useful for applications comprising a large humber lodrs duration tasks to
be executed in space-shared resources with medium or lalvAgeplications com-
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Figure 1. Architecture of CronoGuMP

posed of medium duration tasks in these resources shoudiment an acceptable
turn-around time. For those who need to execute large tasiesal to execute their
applications in space-shared resources with heavy loadhanstrategy must be
applied.

4 Explicit Allocation Strategy

In this section we present the Explicit Allocation Strateglyich implements an
approach different from the Transparent Allocation Sggt@revious strategy pro-
vides transparency and priority to local users. Howevetelare cases where a
grid user has access (an account) to several space-shamtoes and wants to
use these resources at the higher local priority. Thisesiyéd approach is based
on adapting requests from Grid Scheduler to request resstiodhe space-shared
resource scheduler.

Based on the factors presented in Section 2, the main probfemsing space-
shared resources with eager schedulers in a grid enviransiench detailed re-
guest. The choice of the parametersgndp) could render great impact in turn-
around time [15]. In fact, several research works address#éhavior of space-
shared resources considering issues related to requastraebackfilling [10, 14,
26, 28, 32, 33] and great impact that request area could ¢awsaiting time. On
the other hand, a greater area allows more processing tonee s thus not clear
whether one should issue a few large requests or many snea! on

4.1 Requested time issues

In order to specify a good value far, we should know the time needed to execute
a grid task (a task sent by the grid broker or simpliask. Such value should



prevent us to: (i) craft useless requests (in which the temet enough to execute
the task completely) or (ii) craft big requests where sigaiiily larger than needed
(it may render long waiting times). This suggests that a reano specify this
parameter is to ask the user how much time should be requistadtask (i.e.,
how much time is needed to execute a task). However, suclhagpwould be a
quite difficult procedure since in general users do not hiaigekind of knowledge
about the execution of their applications on evepace-sharedesource available
on the grid.

Therefore, we propose that space-shared resource regaeske adapted by the
grid middleware (request adaptor component) which esésgbod values for time
needed by one task. By adaptation we mean that parametettaiseaft the re-
guests can change dynamically such that new requestsccraftéd be better than
old ones.

4.2 Number of processors issues

Coming up with the number of processors is easier than theested time, in

the sense that a bad value for this parameter does not makessibfe the task
completion (that is, it does not render requests in whicltithe is not enough to
execute the task completely). Nevertheless, it also ingpacthow much faster a
request could be processed. This happens because, as walready mentioned,
the execution start time of a space-shared job is diredidyee to its area (number
of processors and amount of time requested). That is, a bayga is harder to fit
into the schedule, and hence tends to wait longer in the queue

Note that a request for processors from a BoT grid broker edbréiken into several
independent space-shared requests, each one asking targeyecessors than the
total number of needed processors (hnumber of tasks) withmpdigation on the
correct execution of the application. Therefore, each estjaan fit into smaller
free slots across the schedule and thus its execution cam &djer. In the limit,
one can issue many requests, each asking for a single poocess

However, all sites we know impose limits (via administratpolicies) to the num-
ber of requests that a user can have in the system at any giwerent. The idea
seems to preclude “monopolization” of the system. Thisqyalenders the specifi-
cation of the number of nodes a harder task because we cammy submit lots
of one-processor requests.

Therefore, when using a grid environment with space-shegsdurce and eager
schedulers, the decision to craft requests must consideekdtion between number
of processors needed, resource load and number of pendjogsts allowed in
order to improve turn-around time of the grid application.



4.3 Automatically Crafting Requests
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Figure 2. Schedulers involved in running BoT applicationsSpace-shared resources.

Based on such scenario and issues described in Sectionsdi4.3 we propose
an adaptive heuristic to craft the requests. The main go#tisfheuristic is to
convert a request fonumberO fTasks processors from grid broker into several
space-shared requests fpt tr) providing a smaller turn-around time to the grid
job (the collection of tasks). We intend to achieve such d¢oahg to maximize
task throughput (that is, the ratio between number of firdstasks and request
turn-around time).

Figure 2 represents our model. There is a grid broker thatwes grid job from the
user. The request adaptor receives the grid broker reqgaimen{number of tasks
to run) and tries to provide workers. This is done via subioissf space-shared
requests crafted by heuristics. Each worker is a comporw@ per processor)
that at a given moment runs only one task. That is, each psocean run several
tasks during requested time but only one at a given momerg.cbmmon use
is a daemon that accepts grid broker invocations (e.g., Miy&tJserAgent and
Condor’s Glide-In [17]).

Users submit their tasks to grid broker which asks resourceigers for proces-
sors. The request adaptor is one provider that elaborate sheared requedts, tr)
and submit it to the resource scheduler queue. In the meantiva space-shared
resource has its local users that are also submitting sgfaared requests.

In order to choose the parameters for requests, the requ@stas should obtain
some information about the space-shared resource stgtéh@requests in queue),
space-shared resource scheduler administrative po(iti@simpose some restric-
tions to requests) and the grid application. The infornetie request adaptor must
know about the resource follows:

(1) The maximum allowed number of pending requests thatlgo#éer can have
on space-shared resource schedutex{PendingReque$ts

(2) The maximum allowed number of processors per requesxProg.

(3) The maximum allowed amount of time requested per requestTi).

(4) The queue state.



The knowledge about grid applications is obtained by obsgrxecution of tasks.
That is, the grid broker or request adaptor does not knowhamytabout the grid
job on its submission. As time goes by, it acquires knowleddg®ut the application.
The request adaptor saves (i) requested amounts of timdjipiidhe requested
time of each task was enough for a task completion. Basedi®mtbrmation, the
requested time is adapted. It can be enlarged (time was nagéhor shrank (time
was enough) for future requests.

4.3.1 The heuristics

The request adaptor uses heuristics to craft the requdstsséction presents two
heuristics to make requests: §)atic a naive solution and (iipdaptive which
makes requests based on previous tasks execution and datthefsspace-shared
resource. They are executed every time the grid broker asksdcessors or when
a space-shared request finishes.

The static heuristicasks for fixed requests afProcs = mumberQfPendingTasks g
mamPendzni)Requests

cessors antt = maxT'r as requested time. Of cours&?rocs should be an integer
value (e.g. we cannot ask for 0.5 processor), so we[ug&ocs|. If the number

of tasks is too high (greater than the maximum possible numbgrocessors re-
guested), several new requests can be asked when old orss fihie complete
algorithm of the static heuristic is shown in Algorithm 1.

allowedRequests — max PendingRequests() — actual Pending Requests();

for ¢ = 1 to allowedRequestdo
procs — min(maxProc, [remainingT asks/allowedRequests]);

issueRequest(procs, maxTime),
end

Algorithm 1: Static Heuristic

The naive solution can provide good throughput, howevesédisithe biggest pos-
sible area. As we have explained, big areas are harder tedisameduling queue,
thus rendering long turn-around times. In order to solvdgroblem, we propose
the adaptive heuristic. Its adaptation occurs in both patars, requested time and
number of processors. That is, the requests should be dgatynelaborated by
learning from previous requests and queue state of the nesquoviding better
throughput.

To calculate throughput, we must estimate task runtime. adegtive heuristic
makes an initial estimate (based on a default time). If taskdd be successfully
finished in this time, the estimated runtime will be the romiof the longest task.
If requested time is not enough to run tasks, the estimatddrtatime will be the
requested time multiplied by an integer factor (abruptsieai). Our inspiration to
enlarge or shrink requested time is based on TCP congestimow ideas, which
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in bad situations make abrupt decisions and in good oneseafuta

Based on the estimated time to run a task, the heuristic smbegrequests queue
choosing the best (greatest throughput) set of possiblestg in a greedy manner.
An initial set with a maximum number of pending requestsvedid is created with

the first possible requests. After that, if a new possibleiesticould improve the

throughput, a previous chosen request is discarded ancetheaguest is inserted
into the set of chosen requests. if the chosen set provides processors than
the number of task, requests in chosen set will be issuedl@sthprocessors. The
chosen set is requested and the process can be repeatedafjtiests were not
enough to run all tasks.

freeSlots «— getFreeSlots(get ResourceQueue());
llowedRequests «— max Pending Requests() — actual Pending Requests();

for i = 1 to allowedRequestdo
freeSlot — getNext(freeSlots);

Chosen «— Chosen freeSiot,

end
foreach freeSlot in freeSlots do

if freeSlotimprovesChosen throughputthen
worstRequest «— getW orst Request(Chosen),

Chosen «— Chosen — {worstRequest};
Chosen «— Chosen | freeSlot;

end
end
optimize(Chosen, numRemainingT asks);

jssueRequests(Chosen);

Algorithm 2: Adaptive Heuristic

4.4 Strategy evaluation

We have analyzed the presented heuristics via simulati@mssimulator is based
on the model depicted in Figure 2. In order to ease the asabfsihe adaptive
heuristic behavior, there is only one space-shared res@uailable to a grid bro-
ker. We usedtonservative backfillings an idealized scheduler heuristic, as men-
tioned in Section 2.

In order to represent the user’s requests from local useeppked real supercom-
puter workloads as input for simulations. They are tracesafmachines and were
obtained from Parallel Workload archive [34]. We filtered fmips with missing re-
guest time. The workloads used are described in Table 1.

Unfortunately, grid workloads availability is not the saagesupercomputer work-
loads. In fact, grid workloads are not available and cursggiie of practice utilizes

11



Table 1
Used workloads

Trace System Number of pro- | Number of re- | Offered Load Period
Cessors quests

SDSC SP2 San Diego Su-| 128 73496 72% April/1998 to
percomputer December/2000
Center SP2

SDSC Blue-| San Diego| 1152 250440 73% April/2000 to

Horizon Supercom- December/2000
puter Center
BlueHorizon

CTC SP2 Cornell Theory| 512 79302 54% July/1996 to
Center SP2 July/1997

supercomputer workloads as grid workloads. Besides, $hoi applicable in the
case studied here because these traces do not provide oneation necessary
(e.g., there is no way to know how many tasks were executdwrefore, we de-
cided to use a synthetic grid workload, which creates a laggef combinations
in order to cover several possibilities. In our model, a jab gary in the number
of tasks, task mean execution time, task heterogeneity2§,»4x) and submission
time. Two jobs are of the same type if they have exactly sarhesgdor number of

tasks, task mean execution time and task heterogeneitytabkéneterogeneity of
1x (homogeneous) means that all tasks run in the same timeh@ys a uniform

distributionU (mean/2, 3mean/2) and 4x isU (mean/4, Tmean/4). Table 2 sum-

marizes the parameters to generate grid jobs, renderingS6lpe combinations
for job types. The submission time was random number thdtd@ssume any time
in supercomputer trace interval with the same probability.

Table 2
Possible values for each job parameter.

Heter ogeneity 1x U(meanmean, 2xU(mearn2, 3mean?)
and 4xuU(meary4, Tmeary4)

Task mean execution time 100 seconds, 1000 seconds and 10000 sec-
onds

Number of tasks per job 100, 1000, 10000 and 100000

The value used as maximum requested time was 64800 secbadswWest among
greatest values found in supercomputer workloads used)initial time value to
run a task was one hour (3600 seconds). We have run simudatibare the limit
for maxPR was 1, 2, 3, 4, 5 and 6 (maximum value among sites considetgd [3

Therefore, the number of possible scenarios is: 36 typesh x 6 values for
maxPR x 3 workloadsof space-shared resources? heuristics (static and adap-
tive) = 1296. Note that simulations are independent of edlclrpi.e. to every job
there is a new simulation that does not consider previoasnmdtion (e.g., adapted
requested time).

The static heuristic is used as baseline to adaptive heypestformance evaluation.

12



Thus, we present results as speedup of adaptive heurigicstatic heuristic. That
is, turn-around time obtained with static heuristic divdd®y the turn-around time
of the same job obtained with adaptive heuristic. Thus, aslgreater than 1 in-
dicate that adaptive performed better and values smaléar thshow otherwise.
Each point showed in graphics is the speedup of mean valyelf@xecution time

for simulations of at least 100 jobs with the same typ&herefore, each point is
related to one job type.

Adaptive heuristic obtained better job execution time farsirof cases. The main
difference among the results is due to the change of worklogable 3 summarizes
the averagspeedumf adaptive heuristic over static heuristic for eaabrkload

Table 3
AverageSpeedumf adaptive heuristic over static heuristic

Workload Aver age Speedup
SDSC SP2 2,05

SDSC BlueHorizon 2,37

CTC SP2 14,74

The graphics in Figure 3 show the speedup between staticdaptiee heuristics
for all jobs utilizing SDSC SP2 workload. From Figure 3, itaasy to see that
adaptive shows better results in most cases (speedup fdarahoases is greater
than 1). Moreover, the differences between Figures 3(apfflgzneous), 3(b) (het-
erogeneity 2x) and 3(c) (heterogeneity 4x) suggest tharbgéneity almost does
not impact in results. Results in detail from SDSC BlueHamizvere omitted since
they are very similar to SDSC SP2.

Despite of the fact that global results are better for aglepteuristics, adaptive does
worse for jobs with long task mean time (10000s) and few t#$R® or 1000).
Figure 4 shows the speedup for such cases. These jobs reondsg vesults to
adaptive in comparison to static because the first requestied by the adaptive
heuristic cannot finish a task (which is very large). Thaststic heuristic crafts
“useful” requests (i.e., requests that can run at leastd begore “useful” requests
from adaptive heuristic. Adaptive heuristic looses songeests during the process
to estimate task runtime before makes “useful” requestpaoesshared resource
scheduler. It means the learning process (generate a tegaésn queue, wait for
execution, make a new request and repeat such cycle many tiefere make a
good estimate) is longer than necessary time to requestsstatic heuristic finish.

The biggest jobs (10000 or 100000 tasks of 1000s or 1000@skept results of
turn-around time quite similar (see Figure 5), the speedigsrare around one.
This happens because the needed time to estimate the tasistsmall in relation

2 The number of simulations was defined in order to provide didence level of 95%
with an error less than 5% - based on procedure describedjn [3
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Figure 3. Grid jobs speedup of adaptive heuristic overcsteuristic for SDSC SP2 work-
load
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Figure 4. Job speedup for cases with few tasks of long duratio

to total job time and the requests crafted by static hearateady provide good
throughput. Indeed, the requests produced by adaptivéshieware similar to static

ones after the learning phase.

Figure 6 shows the same results for the CTC SP2 workload. #ssdgeneity does
not render noticeable differences, we decided to presewbakloads in only one
figure. The adaptive heuristic performance was better icadkes (every point is
over than 1 in Figure 6). The main difference is that CTC'dlggmsmaller than
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Figure 5. Speedup for biggest jobs

the SDSC SP2 one. This implies in more opportunities of bickfito adaptive
heuristic requests as they ask for less processors while stguests keeps going
to the end of the queue (they ask the maximum number of protgss
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Figure 6. Grid jobs speedup of adaptive heuristic overcsteuristic for CTC workload

Another fact that to load explains this difference is the attpof the learning cycle
performed by adaptive solution. The cases in which the Isduiigh, the time con-
sumed on each iteration (mainly the waiting in queue) makeddarning process
much longer.

In order to reinforce the analysis of load impacts, we aréfig increased CTC SP2
offered load to 78% by multiplying submission time by fact$r0.7. Jobs had a
behavior similar to SDSC SP2 and SDSC BlueHorizon casesanitiean speedup
of 1.83.

5 Strategies Comparison

In this section we compare both strategies, analyze thdtsestained from the
experiments and provide some insights about situationsendech strategy is bet-
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ter applied. We also describe a scenario that can benefit @itdipation of both
strategies.

From the experiments discussed in Section 3 and presenf8f ime can observe
that the Transparent Resource Allocation strategy prevaleeasonable perfor-
mance for grid users when execution time of each task is ngeé land the space
shared resources have medium to low utilization. It is evassile that long dura-
tion tasks could be executed in an acceptable time in spasedhesources with
low utilization, what can happen in some periods, such agdagts, weekends and
vacations. The main goal here is minimum influence to lodération.

In spite of loss of performance when executing grid tasks gtnategy is well fitted
to be used in sites where local users need higher priorigsaurce access, because
resources will always be available to such users. We betletethis is acceptable
because commonly grid users can obtain resources in maretiesite, while lo-
cal users of space shared resources (typically runninggedgiormance computing
applications) usually depends on it to efficiently exechertapplications, because,
in general, tightly-coupled applications can not be sglitéfficiently among sev-
eral sites. As intrusiveness caused by the Transparentatitm Strategy is almost
negligible, this strategy may motivate administratorsdoate resources to the grid.

On the other hand, the Transparent Allocation Strategy getierate, to the grid
user point of view, more faults, because resources can leenpted in behalf of

local users any time, thus grid application can be abortethgatime, and it adds

more costs (related to rescheduling) in the grid user agipdin. However, exper-

iments show that depending on characteristics of the agfit, overhead added
by this strategy is acceptable. Moreover, one must remethbéthese resources
would be wasted otherwise. Enabling the grid user to defpeled-up from them

is a definitely win.

Regarding the Explicit Allocation Strategy, experimentegented in Section 4
show that it is a useful strategy to be applied even in longitilom tasks or in
sites with high load. Nevertheless, both Transparent Alion Strategy and Ex-
plicit Allocation Strategy can be used efficiently in siteghMow and medium
load. The Explicit Allocation Strategy is a costly strategy it should reserve re-
sources to grid users. In such a strategy, grid users areedeaslocal users, and
therefore must be accepted by the local administrator ds. Juerefore, we ex-
pect a given user to be able to use the Explicit Allocatioratgtty on a smaller
number of sites than what she can reach via the Transpartadafibn Strategy.
The best effort, non intrusive characteristics of the Tpanent Allocation Strategy
encourages system administrators to make their resources \widely available.
(However, the utilization of resources by unknow usersn(ftbe grid) can also be
a problem to the site administrator due to accounting andrggg

Evaluating the intrusion of donating the resources andantaes given by both

16



strategies, we can distinguish the approximate cost tohgseesources that can be
applied the strategies. Resources obtained using thepaserd Allocation Strat-
egy are cheaper, since these resources would go idle odger@n the other hand,
the cost of resources using the Explicit Allocation Strgtage more expensive
since there is an explicit reservation of resources, whmhldcbe used by local
users that “pay” for this privileged access.

We envision a mixed utilization of both strategies using eon®@my model. The
decision of what strategy to use to request resources isl lmasthe cost of the re-
sources and the time available to get the results from thkcagipn. In this econ-
omy model, users need to “pay” for resources access andgpgmlicy in which a
grid scheduler will scavenge resources. This policy witlide if the scheduler will
minimize the spending, or accelerate execution completioaven, try to execute
the application based on a specific deadline with the minirnast.

6 Conclusionsand Future Work

Grid computing has been shown as an important tool to bo#mseiand industry
in order to have access to more computational resourceseTiesources can be
scientific instruments, storage, network bandwidth andgssors. Processors used
in grids can vary from idle workstations to space sharedwess, such as cluster
of workstations or supercomputers.

This work presented the Explicit Allocation Strategy, whaonsists on deploying
a heuristic to make a smart use of space shared resourcaeingreo grid users
access to an amount of resources as soon as possible. Beggtis a counterpart
of our previous work, called the Transparent Allocatiorag&igy, which consists in
donating to the grid resources while they are not in use byl@rgl cluster users,
preempting resources from the grid when they are requestiatal users.

An important issue concerning the Transparent Allocatiat8gy is the efficient

fault tolerance support. This issue is critical since thategy aborts grid tasks
being executed in nodes requested for local utilizationc&we focus on Bag of
Tasks (BoT) applications, the integrity of the applicati®not affected when a task
is aborted. The aborted tasks are inserted again in the saskd to be executed
and resubmitted when processors become available. The drawvback of this

approach is that the application or grid middleware mustiexpake care of these
faults.

A new type of resource scheduler, called Site Resource atdrg@RS), was intro-
duced in [31]. It represents the site resources in the grikimgethem available to
higher Grid Schedulers, managing access rights and ressutitization. In such
approach, users ask (one or more) SRS about site capaBdiged on the answers
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from SRS’s, users can divide their jobs among sites, delegédr each site and
amount of tasks proportional to the site’s declared capa&fterwards, users can
probe status of the application, in order to identify whettiee application had
already finished or is taking too much time to be completedti&yapplication

completion, the grid user can retrieve results generatatidgpplication.

The Explicit Allocation Strategy can exploit the well resdaed area of eager
schedulers without modification as the allocation was ofpastic. The results
show that it is possible to use the resources and the behaivibe heuristics: (i)
the naive, static heuristic and (ii) adaptive heuristicaptive heuristic shows better
performance in most of cases. Such solution was also impiegdéor OurGrid [9].

In spite of being two different approaches to the same proflee strategies are ac-
tually complementary: it is possible to deploy both teclueis; allowing some users
to use explicit allocation (due to fact that those users@eallusers, or because the
user payed to do that or simply because grid user has alreadgaunt for that
space-shared resource), while others can only obtaingaaast allocation. In fact,
allowing different policies to different users can encag#&aystems administrators
do deploy resources to the grid, increasing grid commuaied contributing to
advance of science. As future work, we intend to explore egoa incentives for
site administrators to provide resources for the grid (Vilaee or both strategies),
as well as to determine whether and in which conditions westgport tightly
coupled applications.
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