
Performance-aware server consolidation with adjustable
interference levels

Luis Carlos Jersak
Pontifical Catholic University of Rio Grande do

Sul (PUCRS)
Av Ipiranga 6681 - Porto Alegre, Brazil

luis.jersak@acad.pucrs.br

Tiago Ferreto
Pontifical Catholic University of Rio Grande do

Sul (PUCRS)
Av Ipiranga 6681 - Porto Alegre, Brazil

tiago.ferreto@pucrs.br

ABSTRACT
Virtualization technologies and server consolidation are the
main drivers of high resource utilization and energy effi-
ciency in modern Data Centers. However, some combina-
tions of virtual machines into the same server may lead to
severe performance degradation. This performance degra-
dation is known as virtual machine interference. In a typ-
ical Data Center, different measures of virtual machine in-
terference can be employed, depending on applications im-
portance. Supporting a higher virtual machine interference
may result in a higher consolidation, while strict low in-
terference requirements may demand more resources. This
paper presents an algorithm for server consolidation that
uses an adjustable virtual machine interference threshold to
map virtual machines into physical servers, allowing users
to get a better trade off between amount of resources and
performance according to their needs. Simulation results
show that the solution succeeds in maintaining the interfer-
ence levels below a defined threshold while also providing
efficient server consolidation.

CCS Concepts
•Computer systems organization → Cloud comput-
ing;

Keywords
virtualization; server consolidation; interference

1. INTRODUCTION
Virtualization is a core technology in modern Data Centers.
It provides higher abstraction and flexibility to deal with
IT resources, and enables a substantial reduction in power

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.
SAC 2016,April 04-08, 2016, Pisa, Italy
c©2016 ACM. ISBN 978-1-4503-3739-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851625

consumption and footprint. In the last years, enhancements
in hardware and software enabled the utilization of virtu-
alization technologies in production systems with minimal
performance impact. Furthermore, virtualization is also rec-
ognized as one of the main pillars of cloud computing.

Nevertheless, multiplexing computing resources of a physi-
cal machine between several virtual machines (VMs) is not
trivial and may lead to performance issues between virtual
machines. There are several evidences that show that virtual
machine interference (i.e. the performance penalty caused
by the dispute of several VMs or applications over the same
computational resource) may occur, depending on the work-
load running on each VM. In some cases, the impact is so
high that may even lead a virtual machine to stop respond-
ing [8, 12, 19]. Despite the existence of certain hypervisors
specially suited for specific workloads in order to minimize
the interference, all hypervisors present some interference on
VMs, depending on the characteristics of the VMs’ work-
loads.

In order to minimize the interference, VMs may be grouped
together based on the impact they cause on each other. Cur-
rent server consolidation algorithms focus on minimizing the
number of physical machines used [7]. Some algorithms also
include rules to minimize the interference [20, 3, 10]. How-
ever, the effectiveness of server consolidation, i.e., minimiza-
tion of the number of physical machines, and interference,
are opposite goals. Depending on the level of interference
desired, the consolidation may be more or less aggressive.

Costs should also be taken into account when focusing on
reducing virtual machine interference, since extra physical
servers will be needed to accommodate the virtual machines.
Considering that different scenarios have different perfor-
mance demands (e.g., a test environment versus a produc-
tion environment), the trade off between performance and
cost is an important aspect.

This paper proposes a server consolidation algorithm that
minimizes the number of required physical servers, given an
accepted, user defined, virtual machine interference thresh-
old. It uses a virtualization interference model and a clas-
sification of each virtual machine regarding its resource uti-
lization profile. The algorithm is evaluated using simulation
and tests show that it succeeds in consolidating servers while
keeping the virtual machine interference under the defined
thresholds.

420

The paper is organized as follows. Section 2 presents related
work with proposals to minimize the virtualization interfer-
ence through server consolidation. Section 3 presents the
server consolidation algorithm using adjustable interference
thresholds, as well as a virtual machine interference model
used by the algorithm. Section 4 presents the evaluation of
the algorithm through simulation. Finally, Section 5 con-
cludes the paper.

2. RELATED WORK
In this section we present related work with proposals to
minimize the interference in server consolidation. These
works have different main objectives like virtual machine in-
terference reduction [20, 3, 10], load balancing among servers
[11, 1] or energy saving [16, 9].

On Zhu et al. [20], the authors developed a consolidation al-
gorithm split in 2 different parts: an interference model and
the on-line consolidation algorithm. The interference model
is further divided in two other stages: off-line model train-
ing and the resource interference matrix. The initial place-
ment of the VMs is performed based on an off-line profile,
and then further placements are done by the consolidation
algorithm based on the characteristics of the VM to be con-
solidated and the influence matrix obtained through off-line
model training. Also, the algorithm periodically monitors
the VMs and updates its resource utilization profile. This
work’s approach focus at guaranteeing that an application
(VM) will finish its work before a defined deadline, while try-
ing to do the best possible consolidation without affecting
the deadlines established.

Similar to the previous work, TRACON [3] is a framework
for task and resource allocation composed of three major
components: an interference prediction model, an interference-
aware scheduler, and a task and resource monitor that col-
lects data about the applications and feeds it to the interfer-
ence prediction model. The scheduling algorithm may use
three different strategies: the ”Minimum interference online
scheduler” make quick scheduling decisions, but these may
not be optimal. The ”Minimum interference batch sched-
uler” puts tasks in a queue before scheduling them, making
better scheduling decisions but delaying the scheduling. The
last strategy is a mix of the former two.

In Nathuji et al. [10], the authors propose the concept of ”Q-
states”, where a higher q-state means a higher level of QoS
for the VMs. To achieve this, first the VMs are profiled by
a ”staging server” which identifies the amount of resources
needed by the VM to maintain a certain level of QoS, then
each VM is scheduled by a bin packing-like scheduling tech-
nique by the ”cloud scheduler”. This scheduling has one
variation: the cloud scheduler keeps an amount of resources
reserved to be allocated to a VM impacted by resource in-
terference. If a VM is never impacted, a user may choose
to pay a greater fee to have part of the reserve allocated
to a VM to achieve higher Q-States. The downside of this
method is clear: if none of the VMs allocated in a server
suffer from resource interference and the users don’t ”buy”
the reserve, the resource reserve is wasted.

The work presented in Ni et al. [11] proposes a policy for
mapping virtual machines that focus on reducing the in-

terference among servers. The algorithm checks the current
load in each available server and then generates a ”roulette of
probabilities” that contains the probability of each server re-
ceiving the current VM. As the mapping generated is based
on the roulette, even with the probability being lower, there
is still a chance that the VM will be allocated in a server
that is overloaded.

Bobroff et al. [1] proposes an iterative algorithm that pe-
riodically verifies the load in each server and then remaps
the virtual machines using migration. The initial mapping
is done using the first-fit heuristic and then the algorithm
enters a cycle composed by three stages: load measurement,
load prediction and remapping to balance the load among
servers. There are two main disadvantages in this method:
firstly, the initial mapping does not consider virtual machine
interference which can result in an increased number of mi-
grations already in the first cycle. Also, it is known that
migration of virtual machines can impose overhead in the
servers and the network of a datacenter [17, 6].

The work presented in Srikantaiah et al. [16] focus on re-
ducing the server’s energy consumption while maintaining
its performance above an established threshold. The au-
thors analyze the relation between energy consumption and
server usage and, based on this analysis, propose an algo-
rithm that maps the VMs focusing on reducing the energy
consumption, while maintaining a certain degree of server
performance. The solution uses heuristics because, as men-
tioned by the authors, instead of finding an optimal solution
producing a better mapping overall, there are cases where
the time needed to generate the mapping may be too high.

Similar to the previous work, in Moreno et al. [9] the au-
thors propose an algorithm that focuses on optimizing the
energy consumption by reducing the virtual machine inter-
ference caused by resource disputes. Tests show that in cases
where high levels of resource interference exist, the energy
consumption increases while the performance of the VMs
mapped in that physical server decreases. The algorithm
initially classifies the workload to be mapped, pre-selects a
set of servers that are able to receive the request and then,
using a dynamic monitor that keeps track of the detailed
state of each pre-selected server, maps the VM to the server
with the lowest interference.

Despite these works focus on the virtual machine interfer-
ence problem, most of them try to minimize it, but do not
consider the increase in costs that may be generated by
such approaches. As mentioned before, the possibility to
adjust the trade off between costs and performance is a de-
sirable characteristic for a consolidation algorithm, which is
the main contribution of our proposal.

3. SERVER CONSOLIDATION STRATEGY
The interference between VMs in a virtualization platform
depends strongly on the type of workload being executed on
each VM. Depending on the computing resource being inten-
sively used by the workload, different levels of interference
can occur.

We define virtual machine interference as the penalty in

421

performance suffered by a VM, caused by the sharing of
resources. For instance, considering CPU interference, the
metric evaluated is the execution time in which, for instance,
a 20% interference indicates that the execution time was in-
creased by 20%. In the case of RAM and Disk I/O, the
metric evaluated is throughput in which, for instance, a
20% interference indicates that the throughput is reduced
by 20%. In the case of RAM and Disk I/O, 100% or more
interference indicates that the VM has stopped responding.

3.1 Virtual machine interference model
In order to devise a simple interference model to be used
as a proof of concept with the consolidation algorithm, we
executed tests to identify how much interference each type
of resource sharing produces. We used specific benchmarks
that stress each computational resource separately. The in-
tention of this setup is to simulate virtual machines that
make intensive use of one or more computing resources. Ini-
tially, a single VM running alone in a server was deployed
and its performance was measured. The results of this test
were taken as the base case for comparison. After that, the
amount of VMs mapped to the same server was increased
in order to generate interference and the results compared
to the base case. Each virtual machine is configured with
one virtual core pinned to an exclusive physical core, 4GB
of RAM and 10GB of disk space. Up to 16 virtual machines
were mapped to the same server. Table 1 shows the charac-
teristics of the server used in the tests.

Table 1: Server configuration used in the experi-
ments

Server configuration
CPU 2 Xeon Octa-Core E5-2650, 2GHz, 20MB

cache L3
RAM 64GB DDR3 1333 Mhz
Disk SAS 300GB - 6Gbps
Hypervisor KVM
OS Linux Ubuntu 12.04

For each resource, one or more benchmarks were chosen to
be used as the VMs workload. The benchmarks are pre-
sented in Table 2. The goal is to identify the interference
in a worst case scenario, i.e., when the VM is heavily using
a specific resource. For the CPU resource, a combination
of two benchmarks were used. Figure 1 presents the inter-
ference obtained for each resource (dotted line) and a loga-
rithmic trend line using least squares fit regression used to
predict the interference caused by sharing resources.

The virtual machine interference model is used to predict
the interference generated by a combination of virtual ma-
chines hosted in the same physical machine. The model was
devised from the equations that represent the logarithmic
trends of the interferences obtained for each resource. Each
resource has a different interference equation, since the inter-
ference levels for each resource are different. The equations
obtained in the experiment are presented in Table 3 where X
represents the amount of VMs mapped to a physical server
and Y represents the level of interference produced by such
combination. The equations are used by the consolidation
algorithm explained in Section 3.2. It should be noted that

different equations may be obtained for other hypervisors
and hardware configurations without requiring changes in
the server consolidation algorithm.

3.2 Server Consolidation algorithm
The server consolidation algorithm has two goals: maintain
the virtual machine interference below a threshold defined
by the user (in this case, a cloud infrastructure manager),
and minimize the amount of physical servers needed. The in-
terference control is achieved by the interference model pre-
sented previously, but the algorithm should be easily adapt-
able to use other types of more complex modeling as well.
For the consolidation part of the algorithm, we use heuris-
tics as a proof of concept, since these methods, despite not
finding optimal solutions, usually provide good solutions at
lower computational costs [4]. Similarly to the interference
model, the algorithm can be adapted to use more advanced
consolidation techniques.

We used three well known heuristics to test the consolidation
algorithm. The First-fit Decreasing (FFD) heuristic maps
the virtual machine to the first server found with enough
capacity to accommodate the VM (Algorithm 1). The Best-
fit Decreasing (BFD) heuristic evaluates all servers and maps
the virtual machine to the server that will leave the least
free space after the mapping (Algorithm 2). The Worst-fit
Decreasing (WFD) heuristic does the opposite and maps the
virtual machine to the server that will leave the most free
space after the mapping (Algorithm 3).

Since we use a ”decreasing” version of the heuristics, all
three algorithms initially sort the virtual machines by size,
from the largest to the smallest (procedure SortDescend-
ing()). After that, each algorithm does the VM mapping
based on parameters that represent the size of the VM be-
ing mapped (vm.size), the available capacity of the physical
servers (srv.AvailableCapacity), the virtual machine inter-
ference that will be produced by the combination of VMs
(procedure VMInterf()) and the interference threshold de-
fined by the user.

In the case of the BFD and WFD algorithms, there is also a
parameter that represents the residual capacity that would
be left on the physical server in case a VM was mapped on
that server (residualCapacity), which is used to evaluate the
physical server that will have the least capacity left (BFD
algorithm) or the most capacity left (WFD algorithm).

All heuristics were modified in order to integrate the inter-
ference model presented in the previous section. Therefore,
the algorithm is able to predict the interference that will be
created by the combination of virtual machines and makes
the mapping according to the threshold defined by the user.

4. EVALUATION
In order to evaluate the proposed server consolidation algo-
rithm, we simulated the mapping of 1000 virtual machines
in a typical Data Center infrastructure. The algorithm min-
imizes the amount of servers required without exceeding
a pre-established interference threshold. These results are
compared to the mapping generated by a simple server con-
solidation algorithm using the best-fit decreasing heuristic,

422

Table 2: Benchmarks used in the experiments
Resource Benchmark Description

CPU
CRAFTY [5] Plays chess matches and focus on logic and integer operations.
C-RAY [2] Performs operations with floating-point numbers.

RAM RAMSPEED [13]
Performs 4 types of memory operations (copy, scale, add, triad) to measure the
memory bus throughput.

Disk I/O TIOBENCH [18]
Multithreaded benchmark that performs 4 types of operations (sequential read,
random read, sequential write and random write) to evaluate the data throughput.

(a) CPU (b) RAM (c) Disk I/O

Figure 1: Interference analysis

Table 3: Interference model
Resource Equation

CPU y = 6, 5346ln(x)− 4.4983
RAM y = 34, 398ln(x)− 4, 7183
Disk y = 35, 347ln(x) + 7, 2785

Data: virtual machines, servers, threshold

1 SortDescending(virtual machines);
2 foreach vm in virtual machines do
3 foreach srv in servers do
4 if srv.availableCapacity >= vm.size AND

VMInterf(srv.vms, vm) <= threshold
5 srv.add(vm);
6 break;
7 end
8 end
Algorithm 1: Server consolidation algorithm using FFD
heuristic

which does not consider virtual machine interference. Each
virtual machine has a defined size, which establishes the per-
centage of occupation in the server, and a profile of resource
utilization, which defines which resources (CPU, RAM and
Disk I/O) the VM uses intensively. Table 4 shows the sizes
of the VMs used in the tests and the distribution of each VM
size in the set. The distribution of VM sizes was based on
a survey [14] that shows the popularity of different instance
types on Amazon EC2 [15].

An important parameter used in our experiments is the in-
terference threshold. Lower thresholds result in an increased
number of required servers, since fewer VMs will be mapped
to each physical server in order to maintain the interference
low. The thresholds evaluated vary from 0% up to 90%, in

Data: virtual machines, servers, threshold

1 residualCapacity = MaxCapacity;
2 SortDescending(virtual machines);
3 foreach vm in virtual machines do
4 foreach srv in servers do
5 if srv.availableCapacity >= vm.size AND

srv.availableCapacity-vm.size < residualCapacity
AND VMInterf(srv.vms, vm) <= threshold

6 chosenSrv = srv;
7 end
8 chosenSrv.add(vm);
9 end
Algorithm 2: Server consolidation algorithm using BFD
heuristic

10% increments. The assignment of each VM profile, i.e. re-
sources that present intensive utilization, follows an uniform
distribution. VM profiles are based on the combination of
all metrics (CPU, RAM and Disk I/O) regarding high or
low utilization, resulting in 8 different profiles, ranging from
no resource with intensive utilization till all resources being
used intensively.

Figure 2 shows the amount of physical servers required to
allocate the set of 1000 virtual machines for each threshold.
It is possible to observe that, comparing to the algorithm
that does not take interference into account, the solution
proposed uses approximately 360% more servers to guaran-
tee that no performance interference will exist. However, it
is possible to guarantee that the interference will stay be-
low 50% with an increase of roughly 25% in the number of
servers. In addition, with almost no increase in the amount
of servers, it is possible to guarantee that the interference
will stay below 80%.

Figure 3 shows the maximum interference for each resource

423

Data: virtual machines, servers, threshold

1 residualCapacity = 0;
2 SortDescending(virtual machines);
3 foreach vm in virtual machines do
4 foreach srv in servers do
5 if srv.availableCapacity >= vm.size AND

srv.availableCapacity-vm.size > residualCapacity
AND VMInterf(srv.vms, vm) <= threshold

6 chosenSrv = srv;
7 end
8 chosenSrv.add(vm);
9 end
Algorithm 3: Server consolidation algorithm using WFD
heuristic

Table 4: Virtual machines sizes, server occupation
and distribution

VM Size Server occupation Distribution
1 5% 20%
2 10% 27%
3 15% 14%
4 20% 23%
5 25% 10%
6 30% 6%

using different thresholds and heuristics, and also for the
simple server consolidation algorithm which does not control
the maximum interference (no control). Based on the virtual
machine interference model presented in Section 3, minimum
interference for RAM and Disk I/O are higher than 10% and
30%, respectively. Therefore, below these thresholds there is
no interference for these resources, i.e., the algorithm places
each VM with profiles including intensive RAM or Disk I/O
utilization in a distinct server, in order to attain the desired
threshold.

CPU is the resource with lowest interference. It never ex-
ceeds 15%, even with high thresholds. Therefore, VMs with
profiles of intensive CPU utilization can be consolidated into
a single server, even when low interference thresholds are
required. However, the benefits of server consolidation are
only clear when a higher interference is used (40%), which
is when VMs with high Disk I/O utilization can be consol-
idated into a single server. Disk I/O is the metric which
presents most interference. The RAM metric does not have
a deep impact in the consolidation, since it starts being con-
sidered for interference threshold of 20%, but without a sig-
nificant reduction in the number of required servers.

It is important to observe that the mapping produced by
the algorithm that does not control interference presents a
Disk I/O interference of over 95%, while the proposed so-
lution guarantees that the interference will stay below 80%
without increasing the number of servers needed. Compar-
ing the heuristics, WFD presented slightly better results,
producing lower maximum interference under all thresholds.
This behavior is related to the load balancing characteristic
of WFD, which aims at distributing the load on each server,
instead of concentrating the VMs on a single server.

5. CONCLUSION

Figure 2: Number of servers needed

Server consolidation is considered one of the main features of
virtualization in modern Data Centers. Grouping together
several VMs in a reduced number of servers results in sub-
stantial gains, specially in lower energy consumption and
smaller footprint. However, gathering VMs in servers ac-
cording to its capacity may not provide satisfactory results
if the resources utilization profile of each VM is not taken
into account. The behavior of each VM workload may in-
terfere with other VMs in the same server, resulting in per-
formance problems and affecting end users. Several solu-
tions have been proposed to address this problem, but most
of them focus on minimizing the interference caused by re-
source disputes among virtual machines without considering
that different scenarios may have different performance de-
mands and costs limitations.

This paper presented a server consolidation algorithm which
uses a virtualization interference model to guarantee that
virtual machine interference will be maintained under a user
defined threshold, providing better control of the trade off
between performance and cost. The experiments performed
indicate that the proposal attends the constraint of maxi-
mum interference level, while accordingly reducing the amount
of physical servers needed.

6. REFERENCES
[1] Bobroff, N., Kochut, A., Beaty, K.: Dynamic

placement of virtual machines for managing sla
violations. In: Integrated Network Management, 2007.
IM ’07. 10th IFIP/IEEE International Symposium on.
pp. 119–128 (2007)

[2] C-RAY: C-ray (2013),
http://openbenchmarking.org/test/pts/c-ray

[3] Chiang, R.C., Huang, H.H.: Tracon:
Interference-aware scheduling for data-intensive
applications in virtualized environments. In:
Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and
Analysis. p. 47. ACM (2011)

[4] Coffman Jr, E.G., Garey, M.R., Johnson, D.S.:
Approximation algorithms for bin packing: A survey.
In: Approximation algorithms for NP-hard problems.
pp. 46–93. PWS Publishing Co. (1996)

[5] Crafty: Crafty (2013), http://www.spec.org/cpu2000/
CINT2000/186.crafty/docs/186.crafty.html

424

Figure 3: VM Interference for different thesholds and heuristics

[6] Ferreto, T.C., Netto, M.A., Calheiros, R.N., De Rose,
C.A.: Server consolidation with migration control for
virtualized data centers. Future Generation Computer
Systems 27(8), 1027–1034 (2011)

[7] Marzolla, M., Babaoglu, O., Panzieri, F.: Server
consolidation in clouds through gossiping. In: World
of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2011 IEEE International Symposium on
a. pp. 1–6 (June 2011)

[8] Matthews, J.N., Hu, W., Hapuarachchi, M., Deshane,
T., Dimatos, D., Hamilton, G., McCabe, M., Owens,
J.: Quantifying the performance isolation properties of
virtualization systems. In: Proceedings of the 2007
workshop on Experimental computer science. ExpCS
’07, ACM, New York, NY, USA (2007),
http://doi.acm.org/10.1145/1281700.1281706

[9] Moreno, I.S., Yang, R., Xu, J., Wo, T.: Improved
energy-efficiency in cloud datacenters with
interference-aware virtual machine placement. In:
Autonomous Decentralized Systems (ISADS), 2013
IEEE Eleventh International Symposium on. pp. 1–8
(2013)

[10] Nathuji, R., Kansal, A., Ghaffarkhah, A.: Q-clouds:
managing performance interference effects for
qos-aware clouds. In: Proceedings of the 5th European
conference on Computer systems. pp. 237–250. ACM
(2010)

[11] Ni, J., Huang, Y., Luan, Z., Zhang, J., Qian, D.:
Virtual machine mapping policy based on load
balancing in private cloud environment. In: Cloud and
Service Computing (CSC), 2011 International
Conference on. pp. 292–295 (2011)

[12] Padala, P., Zhu, X., Wang, Z., Singhal, S., Shin, K.G.:
Performance evaluation of virtualization technologies
for server consolidation. Tech. rep. (2007)

[13] RamSpeed: Ramspeed (2013),
http://openbenchmarking.org/test/pts/ramspeed

[14] Reports, D.C.: Aws ec2 instance type survey - what is
popular? (2013), http://www.newvem.com/
aws-ec2-instance-type-survey-what-is-popular/

[15] Services, A.W.: Amazon elastic compute cloud (2013),
http://aws.amazon.com/pt/ec2/

[16] Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware
consolidation for cloud computing. In: Proceedings of
the 2008 conference on Power aware computing and
systems. vol. 10. USENIX Association (2008)

[17] Stage, A., Setzer, T.: Network-aware migration
control and scheduling of differentiated virtual
machine workloads. In: Proceedings of the 2009 ICSE
Workshop on Software Engineering Challenges of
Cloud Computing. pp. 9–14. IEEE Computer Society
(2009)

[18] TIOBench: Tiobench (2013),
http://openbenchmarking.org/test/pts/tiobench

[19] Xavier, M.G., Neves, M.V., Rossi, F.D., Ferreto, T.C.,
Lange, T., De Rose, C.A.: Performance evaluation of
container-based virtualization for high performance
computing environments. In: Parallel, Distributed and
Network-Based Processing (PDP), 2013 21st
Euromicro International Conference on. pp. 233–240.
IEEE (2013)

[20] Zhu, Q., Tung, T.: A performance interference model
for managing consolidated workloads in qos-aware
clouds. In: Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on. pp. 170–179. IEEE
(2012)

425

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160203085439
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

