6 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.4, NO.1,

JANUARY-MARCH 2016

AutoElastic: Automatic Resource Elasticity for
High Performance Applications in the Cloud

Rodrigo da Rosa Righi, Member, IEEE, Vinicius Facco Rodrigues,
Cristiano André da Costa, Member, IEEE, Guilherme Galante,
Luis Carlos Erpen de Bona, Member, IEEE, and Tiago Ferreto

Abstract—Elasticity is undoubtedly one of the most striking characteristics of cloud computing. Especially in the area of high
performance computing (HPC), elasticity can be used to execute irregular and CPU-intensive applications. However, the on- the-fly
increase/decrease in resources is more widespread in Web systems, which have their own laaS-level load balancer. Considering the
HPC area, current approaches usually focus on batch jobs or assumptions such as previous knowledge of application phases, source
code rewriting or the stop-reconfigure-and-go approach for elasticity. In this context, this article presents AutoElastic, a PaaS-level
elasticity model for HPC in the cloud. Its differential approach consists of providing elasticity for high performance applications without
user intervention or source code modification. The scientific contributions of AutoElastic are twofold: (i) an Aging-based approach to
resource allocation and deallocation actions to avoid unnecessary virtual machine (VM) reconfigurations (thrashing) and

(i) asynchronism in creating and terminating VMSs in such a way that the application does not need to wait for completing these
procedures. The prototype evaluation using OpenNebula middleware showed performance gains of up to 26 percent in the execution
time of an application with the AutoElastic manager. Moreover, we obtained low intrusiveness for AutoElastic when reconfigurations

do not occur.

Index Terms—Cloud elasticity, high-performance computing, asynchronism, resource management, self-organizing

1 INTRODUCTION

ELASTICITY is one of the strongest features that distin-
guishes cloud computing from other approaches of dis-
tributed systems [1], [2], [3]. It exploits the fact that resource
allocation is a procedure that can be performed dynamically
according to the demand for either the service or the user.
Elasticity is an essential principle for the cloud model
because it not only provides efficient resource sharing
among users but also makes it feasible to have a pay-as-
you-go computing style. Current state-of-the-art shows that
the most common approach for elasticity is the replication
of stand-alone virtual machines (VMs), when a particular
threshold of a given metric or combination of metrics is
reached [3]. The load balancer maintained by the cloud pro-
vider manages the service calls (which are usually identified
by a URL or IP address) and redirects demands for the most
suitable replica [4], [5], [6]. This mechanism was originally

e R.da Rosa Righi, V.F. Rodrigues, and C.A. da Costa are with the Applied
Computing Graduate Program, Universidade do Vale do Rio dos Sinos,
Sio Leopoldo, RS-93022-000, Brazil. E-mail: rrrighi@unisinos.br.

e G. Galante is with the Computer Science Department, Western Parand
State University, UNIOESTE, Cascavel, Brazil.

E-mail: guilherme.galante@unioeste.br.

e L.C.E. de Bona is with the Department of Informatics, Federal University
of Parand, Curitiba 80060-000, Brazil. E-mail: bona@inf.ufpr.br.

o T. Ferreto is with the School of Computer Science, Pontifical Catholic
University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil.

E-mail: tiago.ferreto@pucrs.br.

Manuscript received 22 July 2014; revised 3 Mar. 2015; accepted 13 Apr.
2015. Date of publication 20 Apr. 2015; date of current version 2 Mar. 2016.
Recommended for acceptance by K. Keahey, I. Raicu, K. Chard, B. Nicolae.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TCC.2015.2424876

developed for dynamic scaling server-based applications,
such as web, e-mail and databases, to handle unpredictable
workloads, enabling organizations to avoid the downfalls
that are involved with non-elastic provisioning (i.e., over-
and under-provisioning) [7]. Thus, following this idea,
cloud elasticity is also used in different areas, such as video
on demand, online stores, BOINC applications, e-gover-
nance and Web services [8]. Despite the clear benefits of its
adoption, elasticity poses some challenges to the high per-
formance computing (HPC) application or service develop-
ment. Although transparent to the user, the foregoing
elasticity mechanism is suitable on loosely coupled pro-
grams in which replicas do not establish communication
among themselves [9].

Today, multiple cloud computing providers focus on
applications that demand high performance computing [10].
Despite the increasing adoption of high-speed network
technologies, such as Infiniband and 10 Gigabit Ethernet
and hardware-assisted virtualization [11], HPC applications
still have difficulty when taking advantage of a variable
number of resources for many reasons: (i) the typical devel-
opment of such applications, that traditionally use Message
Passing Interface (MPI) 1.0, involves a fixed number of pro-
cesses (or threads), so not exploiting the eventual addition
of new resources [8]; (ii) despite overcoming the previous
limitation by providing dynamic process creation, the appli-
cations with MPI 2.0 are not ready, by default, to present an
elastic behavior, i.e., programmers must explicitly create or
destroy processes during execution, besides managing com-
municators topology and load balancing by their self [12];
(iii) the fact of either a premature death of a process or a
consolidation of a VM that hosts one or more processes

2168-7161 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

RIGHI ET AL.: AUTOELASTIC: AUTOMATIC RESOURCE ELASTICITY FOR HIGH PERFORMANCE APPLICATIONS IN THE CLOUD 7

from a tightly coupled parallel code can imply the termina-
tion of the application execution [8], [18]; (iv) the elasticity
setup normally requires a previous configuration of lower/
upper thresholds, rules and actions, and a definition of a
load metric, which can involve both cloud computing
expertise and a deep knowledge of the application code [5],
lel, [91, [13].

To bypass these limitations in the joint-analysis of
cloud elasticity and HPC applications, some approaches
impose code rewriting [8], [13], former knowledge of
the application phases [14], [15], [16], and the stop-
reconfigure-and-go [8] mechanism. Particularly, this last
approach is not suitable for short running applications,
since the time that the application remains stopped can
overcome the possible gains with elasticity. Besides these
alternatives, resizing or vertical elasticity [9], [43] can
also be employed to to reconfigure CPU, memory or disk
parameters of a VM. Although especially pertinent to
MPI 1.0 applications, since the number of processes
remains unchanged, this technique is bounded by the
theoretical characteristics of the node that executes the
VM. To the best of our knowledge, as described in
Section 2, there is no model that covers distributed
resource reconfiguration for HPC systems, addressing
concomitantly the aforementioned elasticity problems
and transparency in delivering this capability to the user.
Considering this background, this article presents an
elasticity model called AutoElastic to manage the alloca-
tion of virtual machines for HPC applications. AutoElas-
tic acts at the PaaS level of a cloud, not imposing either
modifications on the application source code or extra def-
initions of elasticity rules and actions by the programmer.
Furthermore, AutoElastic proposes an operation that does
not have any prior knowledge of the application, ignor-
ing, for example, the expected time for concluding each
one of its phases. AutoElastic brings two contributions to
the state-of-the-art in HPC applications in the cloud:

i) Use of an Aging-based technique [19] for managing
cloud elasticity to avoid thrashing on VM allocation
and deallocation procedures;

ii) An infrastructure to provide asynchronism on creat-
ing and destroying virtual machines, providing par-
allelism of such procedures and regular application
execution.

In addition to AutoElastic, this article also describes both
the implementation and evaluation of a prototype that was
developed using the OpenNebula [20] middleware. The
prototype was used to run a numerical integration applica-
tion over a private cloud under different situations of load
(Ascending, Descending, Wave and Constant). The goal is
to show the AutoElastic actions considering the load
changes and the impact of both the loads and the asynchro-
nism on the applications performance. The remainder of
this article will first introduce related studies in Section 2.
Section 3 presents the AutoElastic model, revealing how
we developed the aforementioned contributions. Section 4
shows the AutoElastic prototype, the evaluation methodol-
ogy and a discussion of the results. Finally, Section 5
expresses the final remarks, highlighting the contributions
with quantitative data.

2 RELATED WORK

This section is organized to present the perspective of elas-
ticity from both public cloud providers and academic
research initiatives, showing the existing gap in the state-of-
the-art on managing elasticity for HPC applications. Table 1
shows this compilation. Basically, cloud providers stand to
present a robust solution that is ready to use, while aca-
demic research shows frameworks, plugins and/or new
algorithms for the problem of elasticity in the cloud. In this
article, the term elasticity refers to actions for requesting or
releasing resources on-the-fly during service runtime [9].
Considering Table 1, the action mode will decide how
resources will be dealt with as well as their types [21]. In the
horizontal approach, the number of instances (VMs) is
increased or decreased. On the other hand, the vertical
approach resizes service attributes, such as the CPU, mem-
ory or disk capacity. The elasticity management policies are
based on [9], which considers two main classifications in
accordance with programmer intervention: manual or auto-
matic. The first considers either the use of an application
programming interface from the cloud middleware, a
graphical or a command-line tool.

In the case of the automatic policy, there are two subdivi-
sions: reactive and proactive. Reactive normally uses rules-
condition-action statements and predefined thresholds for
elasticity management. On the other hand, a proactive
approach employs prediction techniques to anticipate the
behavior of the system and to thereby decide the reconfigu-
ration actions. Although the word automatic is used, both
policies are expected to require a preliminary configuration
from the user viewpoint to set up the initial parameters.
According to Galante and Bona [9], there are three methods
for providing elasticity: (i) VM replication, (ii) VM migra-
tion and (iii) VM redimensioning. The last method concerns
the addition of processes for the purpose of exploiting new
available resources.

2.1 Commercial and Open Source Initiatives

The commercial and open source initiatives are noted for
addressing elasticity either manually, considering the user
perception [20], [22], [25], [26], [28], [29], or through previ-
ous configurations (with reactive elasticity) [11], [23], [24],
[27]. The manual approach is especially common in private
clouds. Users can develop their own application for moni-
toring services that run on VMs, launching elasticity actions
when necessary. However, some middleware, such as Ama-
zon AWS, Windows Azure and Nimbus, provide configura-
ble subsystems for service monitoring and elasticity
management. Users must complete the rules and the limits
of a metric to be monitored as well as the conditions and
actions for reconfiguration. AWS provides an API and a
graphical tool for these tasks. The monitoring is performed
by CloudWatch, and the elasticity itself is managed
reactively by Autoscaling [11].

Windows Azure offers a library, called Autoscaling
Application Block, in which the user must add the applica-
tion project for enabling the elasticity feature. This approach
allows the programmer to use performance counters and to
write elasticity rules. AzureWatch is another way of control-
ling the number of instances; it is a framework that works

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.4, NO.1,

TABLE 1

An Overview of Commercial and Academic Initiatives to Address Cloud Elasticity

JANUARY-MARCH 2016

Systems Level Action mode Policy Objective/Metric Elasticity Method Interface/Observations
Commercial, OpenNebula [20] laaS Horizontal Manual Defined by the user Replication CLI, GUI and API
open source and vertical and migration
initiatives
Eucalyptus [22] TaaS Horizontal Manual Defined by the user Replication CLI, GUI and API
and vertical and migration
Amazon AWS [11] TaaS,PaaS Horizontal Automatic, reactive CPU, network, Replication Amazon AutoScale,
with preconfiguration =~ memory and disc CloudWatch and API
Windows Azure [23] TaaS,PaaS Horizontal Automatic, reactive CPU and network Replication GUI and API
with preconfiguration and migration
Nimbus [24] TaaS Horizontal Automatic, reactive CPU Replication GUI and Phantom
with preconfiguration plugin
OpenStack [25] laaS Horizontal Manual Defined by the user Replication CLIand API
CloudStack [26] TaaS Horizontal Manual Defined by the user Replication CLI, GUI and API
and vertical and migration
RightScale [27] TaaS Horizontal Automatic, reactive CPU, work queue Replication Specialized
with preconfiguration framework and
GUI
Academic PRESS [31] TaaS Horizontal Automatic, reactive Service Level Redimensioning Framework for
research Objective (SLO) resource
initiatives management
with XEN
ElasticMPI [8] PaaS Vertical Automatic, reactive CPU Replication Monitoring
directives are
inserted in the
source code
Work Queue [13] PaaS Horizontal Manual CPU Redimensioning Framework for
Windows Azure
and Amazon AWS
COS [5] PaaS Horizontal Automatic, reactive CPU and network Replication Management on
and Migration operating
system-level
Ming, Li e Humphrey laaS Horizontal ~ Automatic, proactive Conclusion time of Replication System that works
batch jobs over Windows
(6] Azure
Lightweight Scaling TaaS Horizontal Automatic, reactive CPU and memory Replication, Framework for
[7] and vertical redimensioning resource
management
Kingsfiher [21] laaS Horizontal Automatic, reactive Budget (cost) Replication Executes over
and proactive and migration OpenNebula
Moreno e Xu [33] laaS Horizontal =~ Automatic, proactive Energy Replication Framework for
and vertical and migration resource
management
Scattered [34] TaaS Horizontal ~ Automatic, proactive ~ CPU and network Migration Framework for
resource
management
Sandpiper [35] laaS Horizontal Automatic, reactive CPU, network Redimensioning Framework that
and vertical an proactive and memory and migration works over XEN
Elastack [36] laaS Horizontal Automatic, reactive CPU Replication Plugin that works
over OpenStack
Elastic Queue Service TaaS Horizontal Automatic, reactive Number of requests Replication Framework that
[37] and vertical works over
Amazon AWS
Elastic Site [24] laaS Vertical Automatic, reactive Number of requests Replication, Resource manager
with preconfiguration redimensioning for Nimbus
Suleiman [38] TaaS Vertical Automatic, reactive CPU Replication Use Amazon AWS
and CloudWatch
Kaleidoscope [40] laaS Horizontal Automatic, reactive CPU and memory Replication Micro-elasticity
(cloning) by VM cloning

with CPU usage, history, mean response time and other data
regarding the VM [23]. Another possibility in AzureWatch is
to employ explicit action rules. The Nimbus system, in turn,
works as a batch job scheduler for Amazon EC2-based
cloud environments. Nimbus uses Phantom to monitor the

behavior of resources based on an observed metric. Phantom
allows setting of the minimum and maximum number of
VMs for a service execution, the number of VMs that will be
launched when an upper limit is found and the number of
VMs that will be consolidated when attaining a lower limit.

RIGHI ET AL.: AUTOELASTIC: AUTOMATIC RESOURCE ELASTICITY FOR HIGH PERFORMANCE APPLICATIONS IN THE CLOUD 9

2.2 Academic Research Initiatives

The academic research initiatives aim to fill the gaps or
improve the already existing elasticity approaches. In this
way, the following subgroups can be extracted: (i) parallel
and high performance computing [1], [5], [6], [7], [8], [13],
[14], [16], [32], [36], [41]; (ii) budget-oriented (financial costs)
[6], [21]; (iii) federated-based cloud computing [5], [24], [30];
(iv) predictive models for detecting behavior patterns on
cloud services [6], [21], [31], [33], [34], [35]; (V) energy sav-
ings and overbooking of VMs over physical machines [14],
[33]; (vi) real-time computing, addressing deadlines for the
services [6], [8], [33], [37]; (vii) message-oriented middle-
ware solutions [37]; and (vii) web-based workload and
applications for both business and transactional areas [4],
[32], [35], [38], [39].

In the following, the HPC subgroup is expanded due to
its tight relation with this work. ElasticMPI offers elasticity
for MPI applications by stop-and-relaunching the applica-
tion with a newer resource configuration [8]. The system
assumes that the user knows in advance the expected con-
clusion time for each phase of the program. The monitoring
system can detect that the current configuration cannot ful-
fill the given deadline and adds more resources. Further-
more, the approach of ElasticMPI imposes changes in the
application source code by inserting monitoring directives.
Imai et al. proposes an operating system-level approach
called COS [5], which provides a generic framework based
on an actors-oriented programming language SALSA.
When observing that all VMs are overloaded, migrations
can occur both at the VM (from one node to another) and
actor (from one VM to another) levels. Nevertheless, COS
works only with applications that are strictly composed by
SALSA migration-capable components.

Mao et al. [6] present the notion of self-scalability, in
which the number of VM instances fluctuates in accordance
with the service workload. Once the program has deadlines
for executing each one of its phases, the proposal works
with resources and VM allocations to meet those limits.
Martin et al. [32] present a typical scenario of requests on a
cloud service that acts as a load balancer. The elasticity
changes the amount of worker VMs according to the service
demands. Elastack, in its turn, is a system that runs over
OpenStack and uses Serpentine to detect changes in the
environment [36]. When finishing the workload on each
instance, Serpentine warns the balancer that the target
instance can be consolidated.

Kumar et al. [41] address elasticity on batch jobs. The
application execution is not changed, but it works with mal-
leable launching times. The anticipation of work is per-
formed based on monitoring data. Michon et al. [16] work
with different job mapping strategies for VMs: (i) all jobs to
one VM; (ii) one job per VM and (iii) first fit. The input is
marked by a series of batch jobs that must be mapped to
VMs. The authors perform tests with fixed data regarding
the set of jobs, execution times and time in queues. More-
over, they performed tests only with Bag-of-Tasks applica-
tions. Lin et al. [1] use the CloudSim simulator to enable
their threshold-based dynamic resource allocation scheme.
Instead of performing the monitoring activity at fixed inter-
vals, their proposal turns the current interval malleable in
accordance with the applications regularity. Despite this

advantage, the code execution must wait when blocking
primitives for scaling up and down. Furthermore, there is
no peak treatment when reaching the thresholds.

According to the academic initiatives presented in
Table 1, a technique that is widely used for load balancing
is VM live migration, which is common in traditional hyper-
visors such as Xen and KVM. The table also reveals that the
primary metric of work is the CPU, including its clock and
load, process execution times, number of instructions per
job or process, redimensioning to the percentage of CPU
usage and makespan. In addition, the elasticity is further
explored at the IaaS level and in a reactive fashion. The
initiatives are not uniform regarding the percentage to
be used on the thresholds: 70 percent [4], 75 percent [5],
80 percent [40] and 90 percent [36], [38]. These values
address upper limits that, when exceeded, trigger
horizontal or vertical elasticity.

2.3 Analysis and Research Opportunities

This subsection presents some weak points regarding the
studied systems in Sections 2.1 and 2.2. Systems that are
available in the Web are characterized as general purpose
initiatives and typically require user intervention on a pre-
vious elasticity configuration. In summary, we highlight the
following weak points: (i) no analysis of sporadic peak sit-
uations when reaching a threshold [1], [32], [36]; (ii) need to
change the application source code [8], [13], [42]; (iii) use of
proprietary components that are not available as program-
ming libraries for well-known operating systems such as
GNU-Linux, Windows and MacOS [5], [8], [36]; (iv) need to
know application behavior beforehand, such as the
expected execution time of the components [8], [14], [15],
[16]; (v) resource reconfiguration with a stop-reconfigure-
and-go approach [8]; and (vi) communication among VMs
at a constant rate [34].

Considering the specific area of parallel applications and
elasticity, we highlight the following initiatives: [8], [13],
[17], [32], [42], [43]. Among them, three initiatives execute
iterative applications, where each new phase means that
there is a new effort for redistributing the tasks to slaves [8],
[13], [17]. The elasticity in [13] is offered manually, where
the user captures monitoring data by using the framework
proposed by the authors. Despite the gaps mentioned before
regarding ElasticMPI [8], the strength is to offer (with some
limitations) elasticity over existing MPI programs (versions
1 and 2). Jackson et al. [17] execute master-slave programs
from NERSC as a benchmark for measuring the perfor-
mance of cluster configurations on Amazon EC2. The solu-
tion proposed by Martin et al. [32] concerns the efficiency of
addressing requests on a web server. This solution delegates
and consolidates instances according to both the time
between the request arrivals and the load on the worker
VMs. Spinner et al. [43] propose vertical scaling middleware
for individual VMs that run HPC applications. They argue
that the horizontal approach is prohibitive in the HPC scope
because, following them, a VM instantiation takes at least
1 min to be ready. Finally, elasticity is offered at the API-
level, where the user manages resource reconfigurations by
himself/herself [42]. As said earlier, this strategy requires
cloud expertise of the programmer and would not be porta-
ble among different cloud deployments.

10 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.4, NO.1,

As being a time-consuming operation, the moment of an
scaling out operation must be carefully analyzed to prop-
erly execute HPC applications in the cloud. Both Amazon
AWS [11] and Windows Azure [23] expect x consecutive
load observations outside the margin of a threshold to
launch elasticity actions. Besides x and lower/upper thresh-
olds, they also offer a parameter named cool-down, that
refers to a period after an scaling operation which new elas-
ticity actions are prohibited. In general, academic initiatives
present the following strategies: (i) developed to run over
Amazon AWS, they inherit the aforesaid conditions [11],
[13], [38], [39]; (ii) as Amazon and Azure, the initiatives [5]
and [15] also use a parameter x to represent the number of
times that a thresholds must be exceeded; (iii) wait for y sec-
onds after surpassing a threshold to enable a new elasticity
action [3], besides the use of a cool-down period; (iv) after
taking a single load observation, elasticity takes place if a
threshold is exceeded [2], [16], [36], [40]; (v) an elasticity
action is automatically triggered when occurring any viola-
tion to an service level agreement (SLA) or service level
objective (SLO) [4], [21], [32], [37]; (vi) use of application
knowledge, such as deadlines, to conclude parts of a work-
load, so if the deadline was reached, a new resource is
added to improve the system performance [6], [8]. Strategies
iv and v can present the thrashing problem (i.e., oscillations)
on VM allocation and deallocation actions, since the appli-
cation can be crossing a sudden peak. In addition, strategies
i, ii and iii may not be reactive, presenting a false-negative
scenario, since a either x or y can neglect the real need of an
elasticity action. Finally, adopting one of these three strate-
gies, the user will need a deep knowledge about the applica-
tion code to setup the elasticity parameters, which may
not be a trivial task.

3 AUTOELASTIC: PAAS-BASED MODEL FOR
AUTOMATIC ELASTICITY MANAGEMENT

This section describes AutoElastic, which is an elasticity
model that focuses on high performance applications.
AutoFlastic is based on reactive elasticity, in which the rules
are defined without user intervention. The definition of
elasticity rules is not a trivial task for several reasons. It
involves the setup of one or more thresholds, types of
resources, number of occurrences, definitions of peaks and
monitoring windows. Furthermore, it is not uncommon to
have situations in which optimized elasticity rules control
the behavior of one application and present poor perfor-
mance over other applications. Additionally, the scale-out
elasticity triggers resource allocations that present a direct
impact in the cost of cloud usage. Thus, the cost/benefit
ratio should be carefully evaluated. AutoElastic’s approach
provides elasticity by hiding all of the resource reconfigura-
tion actions from programmers, executing without any
modifications in the application’s code. In particular,
AutoElastic addresses applications that do not use specific
deadlines for concluding the subparts. Its differential
approach covers two topics: (i) efficient control of VM
launching and consolidation totally transparent to the user
and (ii) a mechanism to execute HPC programs on the cloud
in a non-prohibited way. Neither topic was found when
analyzing related work.

JANUARY-MARCH 2016

Rules Actions Application Application
if metric > x Al:Allocate | | #include<> AutoElastic Manager #include<>

then A1 VM int main() " int main()
if metric <y A2: Deallocate | |{.... {on

then A2 VM } ¥

o & A 4
Monitoring

Resources

»
| Resource
i| Management

Cloud Front-End

Resources |4

Resource
" Management

Cloud Front-End

Application }

Cloud

(@) (b)

Fig. 1. (a) Approach adopted by Azure and Amazon AWS, in which the
user must define elasticity rules and configure metrics beforehand;
(b) AutoElastic idea.

3.1 Design Decisions

Fig. 1 depicts the main idea of AutoElastic. Acting at the
PaaS level, it presents a middleware that can be seen as a
communication library used for compiling the application.
Moreover, it comprises an elasticity manager that controls
resource reconfiguration on behalf of the cloud and user.
AutoElastic was modeled with the following requirements
and design decisions in mind: (i) users do not need to con-
figure the elasticity mechanism; however, programmers can
inform an service level agreement with the minimum and
maximum number of VMs to run the application; (ii) pro-
grammers do not need to rewrite their application to profit
from the cloud elasticity; (iii) the investigated scenario con-
cerns a non-shared environment and the execution of a sin-
gle application; (iv) AutoElastic offers a reactive, automatic
and horizontal elasticity, following the replication strategy
to enable it; (v) because it is a PaaS-based framework,
AutoFElastic comprises tools for transforming a parallel
application to an elastic application transparently to users;
and (vi) AutoElastic analyses the load peaks and sudden
drops for not launching unnecessary actions, avoiding a
phenomenon known as thrashing.

AutoFElastic Manager considers data about the virtual
machines load as input for rules and actions, thus acting on
reconfiguring iterative-based master-slave parallel applica-
tions. Although trivial, this type of construction is used in
several areas, such as genetic algorithms, Monte Carlo tech-
niques, geometric transformations in computer graphics,
cryptography algorithms and applications that follow the
Embarrassingly Parallel computing model [8]. At a glance,
the idea of offering elasticity to the user in an effortless man-
ner while considering only the performance perspective,
which is mandatory on HPC scenarios, is the main justifica-
tion for the decisions that we adopted.

3.2 Architecture

Fig. 2 illustrates AutoElastic’'s components and how VMs
are mapped on homogeneous nodes. AutoElastic Manager
can either be assigned to a VM inside the cloud or act as a
stand-alone program outside the cloud. This flexibility is
achieved because of the use of the API offered by the cloud
middleware. Here, we do not present the AutoElastic
middleware because it is integrated with each application
process. Regarding the application, there is a master and a

RIGHI ET AL.: AUTOELASTIC: AUTOMATIC RESOURCE ELASTICITY FOR HIGH PERFORMANCE APPLICATIONS IN THE CLOUD 11

Appli:
cation

VM

2] [(]
T e
(R -~ (L[

Node 0 Node m-1

OJORNORBNOET
M

Virtual
Machines

AutoElastic
Manager /

Master
process

Computational
Resources

Cloud

Slave

Interconnection Network process

Fig. 2. AutoElastic architecture. Here, ¢ denotes the number of cores
inside a node, m is the number of nodes and n refers to the number of
VMs running slave processes, being obtained by c.m.

collection of slave processes. Considering that parallel
applications are commonly CPU-intensive, AutoElastic uses
a single process on each VM and ¢ VMs per node for proc-
essing purposes, where ¢ means the number of cores in a
specific node. This approach is based on the work of Lee
et al. [44], where they seek to explore better efficiency for
HPC applications.

AutoElastic Manager monitors the running VMs periodi-
cally and verifies the necessity for a reconfiguration based
on the load thresholds. The user can pass to the manager a
file that has an SLA that specifies both the minimum and
the maximum number of VMs to execute the application.
AutoElastic follows the XML-based WS-Agreement stan-
dard to define an SLA document. If this file is not provided,
it assumes that the maximum number of VMs is twice the
amount informed when launching the parallel application.
Concerning the fact that the manager, not the application
itself, increases or decreases the number of resources brings
the following benefit: the application is not penalized by the
overhead of synchronous allocation or deallocation of
resources. Nevertheless, this asynchronism leads to a ques-
tion: How do we notify the application about the resources
reconfiguration?

To answer this question, AutoElastic provides a shared
data area to enable communication between VMs and the
AutoElastic Manager. This area is private to the VMs or
nodes inside the cloud. It can be implemented, for example,
through network file system (NFS), message-oriented mid-
dleware (such as JMS or AMQP) or tuple spaces (such as
JavaSpaces). The use of a shared area for interaction among
virtual machines is common practice when addressing pri-
vate clouds [20], [25], [26]. When modeling the AutoElastic
Manager outside the cloud, we can use the cloud middle-
ware supported API to obtain monitoring data about the
VMs. To write and read elasticity actions to and from the
shared area, AutoElastic uses a remote secure copy utility
that targets a shared file system partition in the cloud front-

end. For example, the SSH package commonly offers the
SCP utility for this functionality.

3.3 Elasticity Model

The elasticity is guided by actions that are enabled through
the use of the shared area. Table 2 shows the actions that are
defined to enable the communication between the AutoElas-
tic Manager and Master Process. After obtaining a notifica-
tion for Actionl, the master can establish connections with
the slaves in the newer virtual machines. Action2 is appro-
priate for the following reasons: (i) not finalizing the execu-
tion of a process during its processing phase and (ii) to
ensure that the application as a whole is not aborted with a
sudden interruption of one or more processes. In particular,
the second reason is important for MPI 2.0 applications run-
ning over TCP/IP, which is interrupted when detecting the
premature death of any process. Action3 is generated by the
master process, which ensures that other processes are not in
processing phases; then, specific slaves can be disconnected.

In practice, the communication between AutoElastic and
the master does not require a shared data area. Precisely,
the shared area only makes sense for the master in the cur-
rent master/slave approach because only the master will
address process reorganization. However, this approach
was adopted to make AutoElastic more flexible. The use of
a shared area that the master, slaves and AutoElastic Man-
ager have access to is provided in the future support of
Bulk Synchronous Parallel and Divide-and-Conquer pro-
grams. In these programming models, all of the processes
must be informed about the current resources.

AutoElastic uses the replication strategy to enable elastic-
ity. Considering the scaling out operation, the AutoElastic
Manager launches new virtual machines based on a tem-
plate image for the slave processes. They are instantiated
into a new node, which characterizes a horizontal elasticity
approach. The bootstrap procedure on each allocated VM
ends with the automatic execution of the slave process,
which attempts to establish communication with the master.
In contrast to the standard use of the replication technique
mentioned in Section 1, our framework provides a shared
area to receive and store application and network parame-
ters, making possible a totally arbitrary communication
style among the processes.

Scale-out operations (increase/decrease the number of
VMs) are asynchronous from the application perspective
because the master and slave processes can continue their
execution normally. In fact, the instantiation of VMs is per-
formed by the AutoElastic Manager and, only after they
achieve a running state, the manager notifies the master
using the shared data region. Fig. 3 illustrates this situation,

TABLE 2
Actions Provided by AutoElastic for Communication between AutoElastic Manager and Master Process

Action Direction Description

Action 1 AutoElastic Manager — Master Process ~ There is a new resource with c virtual machines which can
be accessed using given IP addresses.

Action 2 AutoElastic Manager — Master Process ~ Request for permission to consolidate a specific node,
which encompasses given virtual machines.

Action 3 Master Process — AutoElastic Manager ~ Answer for Action 2 allowing the consolidation of the

specified compute node.

12 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.4, NO.1,

System | AutoElastic | Master | Shared Data | M | | Slave
Load Manager Process Area Entity Process
greater L Launch a . ! H :
than the new VM | N
N Asyr U
Maximum N
Threshold : Elasticity:
: ElasiicwtyB Concomitance between
X Is_there_Action1() Evaluation at VM launching and the
loop: flelst = EEEE—— each ’ Master execution
alse B SRR TR
. No Actions external loop ICreate Slave :
]IS’VM He0 i i Process L
1
Write Actiont U‘ 1 Get_Master_data()
T [T
" Master IP | >
Is_there_Action1() 1 :
1
................. 1
Yes and this is ! ! Connection
the process data | H Request
< L !
e d T [P
Connection Reply : : >
Application Task | 1
e T T >
) "
Is_there_Action1() _ ! H PFrtoe(;esoSr:zg
H P
No Actions " H
T w ' ' .

Fig. 3. Sequence diagram when detecting a system load greater than
the maximum threshold.

making clear the concomitance between the master process
and the procedure of VM allocation. Spinner et al. [43]
emphasize that horizontal elasticity is prohibitive for HPC
environments, but here we are proposing asynchronous
elasticity as an alternative, to join both themes in an efficient
way. Regarding the consolidation policy, the work grain is
always a compute node and not a specific VM; as a result,
all VMs that belong to a node will go down with such an
action. This approach is explained by the fact that a node is
not shared among other users and that this approach saves
on energy consumption. In particular, Baliga et al. [45]
claim that the number of VMs in a node is not a major influ-
ential factor on the energy consumption; instead, the fact
that the node is on or off is influential.

As in [5], [11], AutoElastic monitoring activity is per-
formed periodically. The manager captures the values of
the CPU load metric on each VM and uses them in compari-
son with both minimum and maximum thresholds. Each
monitoring observation entails the capture of this metric
and its recording (allowing the use of temporal information)
in a log-rotate fashion. Data are saved in the AutoElastic
Manager repository. Fig. 4 presents the reactive-based
model for the AutoElastic elasticity. Although the system
contemplates three actions, this figure presents only the
actions that are triggered by the AutoElastic Manager. In
the conditions part, a function called System_Load(j) is an
arithmetic average of the LP(i,j) (Load Prediction) of each
node, where i stands for a VM, j is the current observation
and 7 is the number of VMs that are running a slave pro-
cess. Equations (1) and (2) present the aforesaid functions.
LP(i,j) operates with a parameter-denoted window that
defines the number of values to be evaluated in the time
series. Here, t means the index of the most recent observa-
tion, i.e., the value used in calling System_Load(j) (j=t).

1 n—1
System_Load(j) = — - ZLP(i:.j)a (eY)
no5
such that
o LL(3i,5), if j=1t— window + 1,
LP(i, j) = fLPH Lrie o g .
sLP(i,j—1)+5L(i,5), ifj#t—window+1,

(2)

JANUARY-MARCH 2016

RULEL: if CONDITION1 then ACTION1
RULE2: if CONDITION2 then ACTION2

CONDITIONT: System_load(j) > threshold1, where j means the last
monitoring observation
CONDITION2: System_load(j) < threshold2, where j means the last
monitoring observation

ACTIONT1: Allocates a new node and launches ¢ VMs on it, where c is
the number of cores inside the node

ACTION2: Finalizes the VM instances that are running inside a node
and performs the node consolidation afterwards

Fig. 4. Reactive-driven elastic model of AutoElastic.

where t is the value of j when System_load(j) is called, and L
(i,j) refers to the CPU load of VM i at the monitoring obser-
vation that is numbered ;.

LP uses a window to operate the Aging concept [19]. It
employs an exponentially weighted moving average in
which the last measure has the strongest influence on the
load index. In this context, if we decide that the weight of
each observation must not be shorter than 1 percent, the
window can be set to 6 because ; and 5 express the 1.56 and
0.78 percent percentages, respectively. We employ the idea
of Aging when addressing peak situations, especially to
avoid either false-negative or false-positive elasticity
actions. For example, assuming a maximum threshold of
80 percent, a window equal to 6 and monitoring values such
as 82,78, 81, 80, 77 and 93 (the most recent one), we have LP
(i,j) =5.93+1.77+ 1 .80 + 1581 + 3578 4 ;.82 = 84.53. This
value enables resource reconfiguration. In contrast to the
AutoElastic approach, Imai et al. [5] expect x consecutive
observations outside the margin of the threshold. In this
case, the use of x equal to either two, three or four samples
does not imply elasticity, and the system will operate at
its saturated capacity. In addition to this false-negative
scenario, a false-positive happens when an application
presents an unexpected peak or drop, so triggering an
unnecessary scaling out or scaling in operation. Thus,
AutoElastic’s idea for thrashing avoidance contemplates the
use of time series and weighted moving average to smooth
possible noises on load observations.

3.4 Parallel Application Model
AutoFlastic exploits data parallelism to handle iterative mes-
sage-passing applications that are modeled as a master-
slave. In this way, the composition of the communication
framework began by analyzing the traditional interfaces of
MPI 1.0 and MPI 2.0. In the former, process creation is given
in a static approach, where a program starts and ends with
the same number of processes. MPI 2.0 provides features
that enable elasticity because it offers both the dynamic crea-
tion of new processes and the on-the-fly connection with
other processes in the topology. AutoElastic parallel applica-
tions are designed according to the multiple program multi-
ple data (MPMD) model [18], where multiple autonomous
VMs execute simultaneously one type of program: master or
slave. This decoupling helps to provide cloud elasticity
because a specific VM template is generated for each
program type to enable a more flexible scaling-out operation.
Fig. 5a presents a master-slave application that is
supported by AutoElastic. As stated, it has an iterative
behavior in which the master has a series of tasks,

RIGHI ET AL.: AUTOELASTIC: AUTOMATIC RESOURCE ELASTICITY FOR HIGH PERFORMANCE APPLICATIONS IN THE CLOUD 13

1. size = initial_mapping(ports); 1. master = lookup(master_address, naming);
2. for (j=0; j< total_tasks; j++X 2. port = create_port(IP_address, VM_id);

3. publish_ports(ports, size); 3. while (true}

4. for (i=0; i< size; i++)X 4. connection_request(master, port);

5. conection_accept(slavesli], portsfi]); 5. recv_sync(master, task);

6. 6. result = compute(task);

7. calculate_load(size, work][j], intervals); 7. send_assync(master, result);

8. for (i=0; i< size; i++X 8. disconnect(master);

9. task = create_task(work[j], intervalsil]); 9.}

10. send_assync(slavesi], task); (b)

12. for (i=0; i< size; i++){ . intchanges = 0;

1
13. recv_sync(slavesli], results[i]; 2. if (action == 1){
14. 3. changes += add_VMs();
15. store_results(slave[j], results); 4.
16. for (i=0; i< size; i++){ 5. else if (action == 2){
17. disconnect(slavesi]); 6. changes -= drop_VMs();
18.) 7. allow_consolidation();// enabling action3
19. unpublish_ports(ports); 8. }
20. } 9. if (action ==1 or action == 2}
(a) 10 reorganize_ports(ports);

1.}
12. size +=changes;

(c)

Fig. 5. Application model in pseudo-language: (a) Master process;
(b) slave process; (c) elasticity code to be inserted in the Master process
at PaaS level by using either method overriding, source-to-source
translation or wrapper technique.

sequentially distributing them through the slave processes.
The distribution of tasks is emphasized in the external loop
of Fig. 5a (lines 2 to 20). Based on the MPI 2.0 interface,
AutoFlastic works with the following groups of program-
ming directives: (i) publication of connection ports,
(ii) searching for a server using a specific port, (iii) connec-
tion accept, (iv) requesting a connection and (v) disconnec-
tion. Unlike the approach in which the master process
dynamically launches other processes (using the spawn
call), the proposed model operates according to the other
MPI 2.0 approach for dynamic process management: point-
to-point communication with Socket-like connections and
disconnections [12]. The launching of a new VM automati-
cally entails the execution of a slave process, which requests
a connection to the master automatically. We emphasize
that a program with AutoElastic does not need to follow the
MPI 2.0 API and instead follows the semantics of each
aforesaid directive.

Communications between master and slaves follow the
asynchronous model, where sending operations are non-
blocking and receiving operations are blocking (see lines 5
and 7 of Fig. 5b). The method in line 1 of the master process
checks either a configuration file or arguments passed to the
program to obtain the virtual machine identifiers and the IP
address of each process. Based on the results, the master
knows the number of slaves and creates port numbers to
receive connections from each slave. The publishing of the
ports occurs in the method of line 3. Programs with an outer
loop are convenient for elasticity establishment because in
the beginning of an iteration, it is possible to make resource
reconfigurations without changing both the application syn-
tax and semantics [43]. The transformation of the applica-
tion shown in Fig. 5 in an elastic situation is performed at
the PaaS level by applying one of the following methods:
(i) in an object-oriented implementation, overriding the
publish_ports() method for elasticity management; (ii) use of
a source-to-source translator that inserts the elasticity code
between lines 3 and 4 in the master code; (iii) development
of a wrapper for procedural languages to change the
method in line 3 of the master code transparently.

The additional code for enabling elasticity checks in the
shared directory to determine whether there is any new

data from the AutoElastic Manager (see Fig. 5c). In the
case of Actionl, the manager already set up new VMs,
and the application can add data of the new slaves in the
slaves set. In case Action2 takes place, the application
understands the order from the manager and reduces the
number of VMs (and consequently, the number of pro-
cesses in the parallel application) and triggers Action3.
Although the initial focus of AutoElastic is in iterative
master-slave applications, the use of MPI 2.0-like direc-
tives makes the inclusion of new processes and the reas-
sembly of arbitrary communication topologies easier. At
the implementation level, it is possible to optimize the
connections if a process remains in the list of active pro-
cesses. This circumstance is pertinent over TCP networks,
which use a three-way handshake protocol known as an
overhead source when connecting two end points.

4 EVALUATION

This section presents details about the AutoElastic proto-
type and a description of the evaluated application. More-
over, it covers the results and their linking with the
contributions aforementioned in Section 1.

4.1 Prototype Implementation

We implemented an AutoElastic prototype for private
clouds using OpenNebula v,4.2. We implemented the
AutoElastic Manager and the parallel application in Java.
Two image templates for the virtual machines were pro-
vided: one for the master process and another for the slaves.
The manager uses the Java-based OpenNebula API for both
monitoring and elasticity activities. In addition, this API is
also used for launching a parallel application in the cloud,
which is associated with an SLA that can be supplied by the
user. The SLA follows the XML-based WS-Agreement stan-
dard and reports the minimum and maximum number of
VMs for testing the application.

There are some technical decisions that are imposed in
the implementation of the AutoElastic prototype: (i) utiliza-
tion of network file system to implement the AutoElastic
module responsible for providing a private area for data
sharing inside the cloud; (ii) AutoElastic employs periodic
monitoring, which is associated with a period of 30 s (Open-
Nebula lower bound index); and (iii) Contemplating related
work, 80 and 40 percent were used for maximum and mini-
mum thresholds. Looking at decision (i), the manager uses
the binary SCP from the SSH package to obtain or place files
from/to the cloud front-end. These files are in a shared
folder that is enabled with NFS and represents elasticity
actions and process data. We follow this implementation
because the AutoElastic Manager cannot access the NFS
directly, unless it is placed inside the cloud.

4.2 Parallel Program and Environment Setup

The application used in the tests computes the numerical
integration of a function f(x) in a closed interval [a, b]. It was
implemented using the Composite Trapezoidal rule from a
Newton-Cotes postulation [46]. The Newton-Cotes formula
can be useful if the value of the integrand is given at equally
spaced points. Considering the partition of the interval [a, b]
into s equally spaced subintervals, each one with length h

14 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.4, NO.1, JANUARY-MARCH 2016
TABLE 3 Load Function along iterations
Functions to Express Different Load Patterns o SN, N\ ==
So 8 & TS 7 AY _Z ««++Constant
g0 /T /M
Parameters 52 ¢ |4 “ \'-_~ i _==" ‘-_ = =Ascending
Load Load Function %5 4 % 3T A :
v w t Z 55 4 Voo - Seeas % = ==Descending
' £83 e e/
Constant load(z) =4 - 1000000 - - 2 f o= N/ el e
Ascending load(z) =z *txz - - 0.2 500 o‘_iooooo";—goooooooo‘}g;z
Descending load(x) = w— - 1000000 0.2 500 388333888833338888883838 é
(z %t x*2) Iteration
Wave load(x) = v * zx 1 500 0.00125 500000

sen(t*x) +v*z+w

Inload(x), x is the iteration index at application runtime.

([ZL’Z'; :Z'i+1], for i = O, 1, 2, ey 8§ — 1) Thus, Tivrl — T; = h= b—Ta
The integral of f(x) is defined as the sum of the areas of the s
trapezoids contained in the interval [a,b], as presented in
Equation (3). Equation (4) shows the development of the inte-
gral in accordance with the Newton-Cotes postulation. This
equation is used to develop parallel application modeling

b
/f(.TJ)dI%A()—FAl-Q-AQ-FAJ-F+A5_1, (3)

where A; = area of trapezoid ¢, with ¢ =0,1,2,3,...,s — 1.
b h 5
| s g)+) +2 Yo s @

The values of z, and z, in Equation (4) are equal toa and b,
respectively. In this context, s means the number of subin-
tervals. Following this equation, there are s 4+ 1 f(x)-like sim-
ple equations for obtaining the final result of the numerical
integration. The master process must distribute these s + 1
equations among the slaves. Logically, some slaves can
receive more work than others when s + 1 is not fully divisi-
ble by the number of slaves. Thus, the number of subinterv-
als s will define the computational load for each equation.

Aiming at analyzing the parallel application on different
input loads, four patterns were developed and named: Con-
stant, Ascending, Descending and Wave. Table 3 and Fig. 6
show the equation of each pattern and the template used in
the tests. The iterations in this figure mean the number of
functions that are generated, resulting in the same number
of numerical integrations. Additionally, the polynomial
selected for the tests does not matter in this case because we
are placing attention on the load variations and not on the
result of the numerical integration itself.

Fig. 7 shows a graphical representation of each pattern.
The x axis in the graph of Fig. 7 expresses the number of
functions (one function per iteration) that are being tested,
while the y axis informs the respective load. Again, the load
means the number of subintervals s between the limits a
and b, which in this experiment are 1 and 10, respectively.

Polynomial +H5XAS XA+ XM | H5XAS X2 4XM | H5XAE X2 4xM +;5;XA5;+;X"2;+;xM

$a, $b 1,10 1,10 1,10 1,10

load CONSTANT ASCENDING DESCENDING WAVE

Siterations 10000 10000 10000 10000

$v, $w, $t, $z | 0,1000000,0,0 0,0,0.2,500 0,1000000,0.2,500 | 1,500,0.00125,500000
(a) (b) (© (d) (@)

Fig. 6. (a) Template of the input file for the tests; (b), (c), (d) and (e) are
instances of the template when observing the load functions in Table 3.

Fig. 7. Graphical vision of the load patterns.

The larger the number of intervals is, the greater the compu-
tational load for generating the numerical integration of the
function. For the sake of simplicity, the same function is
employed in the tests, but the number of subintervals for
the integration varies.

Considering the cloud infrastructure, OpenNebula is
executed in a cluster with 10 nodes. Each node has two pro-
cessors, which are exclusively dedicated to the cloud mid-
dleware. AutoElastic Manager runs outside the Cloud and
uses the OpenNebula API to control and launch VMs. Our
SLA was set up for a minimum of two nodes (four VMs)
and a maximum of 10 nodes (20 VMs). Finally, we adopt a
window parameter that is equal to 6 in the load prediction
(LP) function to ensure that the weight of each observation
is larger than 1 percent (see Section 3.3 for detail).

4.3 Results and Discussion

We divided this subsection in two parts to debate elasticity
behavior. Following, we present the goals and the metrics
of each part:

e Performance and elasticity viability. The objective con-
sists in presenting performance results when com-
bining starting configurations, load patterns and two
scenarios: (i) use of AutoElastic, enabling its self-
organizing feature for dealing with elasticity; (ii) use
of AutoElastic, managing load situations but without
taking any elasticity action. The metrics measured in
this evaluation are: (i) the time in seconds to execute
the application; (ii) the number of load observations
of the AutoElastic manager; (iii) a comparison index
defined as Resource and; (iv) a Cost function. This
last, presented in Equation (5), means an adaptation
of the cost of a parallel computation [18] for elastic
environments. Instead of using the number of pro-
cessors, here Resource is evaluated empirically taking
into account both the number of observations as Obs
(i) and the quantity of VMs i employed in each
observation (see Equation (6)). The AutoElastic’s
goal is to offer an elasticity model that is costly via-
ble. In other words, a configuration solution may be
classified as a bad if it is capable to reduce the execu-
tion time by the half with elasticity, but spends four
times more energy, increasing the costs for that.
Therefore, considering the values of the cost in
Table 4, the objective is to preserve the truth of
Inequality (7):

Cost = App_Time x Resource (5)

RIGHI ET AL.: AUTOELASTIC: AUTOMATIC RESOURCE ELASTICITY FOR HIGH PERFORMANCE APPLICATIONS IN THE CLOUD 15
TABLE 4
Elasticity Results in Two Scenarios
Starting VMs Load Scenario i: AutoElastic with Scenario ii: AutoElastic without
elasticity support elasticity support
Time Obser-vations Resource Cost Time Obser-vations Resource Cost
A 1978 65 26*4 +27%6 + 12*8 =362 716036 2426 81 81*4 =324 786024
4 D 1775 56 4*4 4 16%6 +36*8 =400 710000 2397 81 81*4 =324 776628
W 1895 59 4*4 4 22*6 +33*8 =412 780740 2444 82 82*4 =328 801632
A 1789 57 39*6 + 18*8 =378 676242 1555 52 52*8 =416 646880
8 D 1570 52 8*6 + 44*8 = 400 628000 1561 52 52*8 =416 649376
W 1686 55 19%6 + 36*8 = 402 677772 1599 53 53*8 =424 677976

Here, A, D and W mean the ascending, descending and wave load patterns. The times are expressed in seconds.

such that

n

Resource = Z(z x Obs(1)),

i=1

(6)

then, the goal is to obtain

Costy < Costg, (7

where o and B refer to the AutoElastic execution
with and without elasticity support, respectively.

o Analyzing asynchronous elasticity. The goal is to pres-
ent the benefits of asynchronous elasticity and the
master process behavior when resource reconfigura-
tion takes place. Regarding the measured metrics,
we are observing both the times to launch a VM and
to deliver it to application.

4.3.1 Performance and Elasticity Viability

Table 4 presents the results when executing the application
over the aforementioned scenarios. The initial configura-
tion starts from two or four nodes, with each node hav-
ing two processors. Therefore, four and eight VMs are
launched using two and four nodes, respectively. Figs. 8
and 9 depict the application’s behavior with and without
elasticity support, where the z-axis expresses the total
time to execute the application.

The results with the Constant load function were the
same in both scenarios because AutoElastic does not sug-
gest any allocation or deallocation during the application
execution. Consequently, 2,360 and 1,467 s were achieved
when testing four and eight VMs for the initial situation.
Specifically, as presented in Table 4, the use of four VMs at
the program launch implies better results when comparing
scenarios i and ii. Fig. 8a shows two moments of VM alloca-
tion when working with the Ascending function, providing
a gain of 19 percent in the application time. The Descending
load function achieves better results than the Ascending
load function because the higher load in the beginning of
the application forces two allocation actions sooner (see
Fig. 8b). This configuration achieved a gain of approxi-
mately 26 percent when comparing AutoElastic with and
without elasticity support. The Wave load function, on the
other hand, presents the AutoElastic capacity to manage on-
the-fly the number of VMs in accordance with the system
load. Fig. 8c shows that when the load passes the limits of a
threshold, an elasticity action is not triggered automatically
because of the Aging concept that is employed by AutoElas-
tic. Concerning the time perspective, elasticity provided
gains of up to 22 percent when using this load function.

As a common feature in the load functions of Fig. 8, the
scenario without elasticity support passes more than half of
the execution above the threshold of 80 percent of CPU
usage. At the same time, this configuration presents peaks

2 nodes and 4 VMs 2 nodes and 4 VMs 2 nodes and 4 VMs
800
700
< 600
8500
5400
———————— 5300 s =
. 200 > *
e 100 & =
0"
CO-ANMMOTITODONNDWDOO — N M OO ANNMT O© O©OVHIDNO = MM LW
NTOVONTOVONTO©OOMMND 0N O WOoOWwOoWwOoLwmOoLwWw—oOr~ ©
TANOTOROOLANDTIVLR2INR TOYTOrRONRR2R25RI
Time in Seconds Time in Seconds
800
i L[7o / | [A
00 0%040000, Ll
. u-nou..““."... \- §500 N “.““ -... \‘—'l.".-‘. -...' \-
o 400 —Jesess o -
= | F300 \ / \
oo 200 |/ . -
° 100 . .
MOVOVOTOVOHIDO ™= DOINMNT OOv—LOI\Oﬂ'I\v—v—NI\OOO“l("J‘DOv—NNﬁ'
ONDVOODONOUWLITNAN—TODM ODODDODNDONDONDMO®ON OO
Time in Seconds Time in Seconds
(b) (©

e Used

Allocated

Maximum Threshold Minimum Threshold

Fig. 8. CPU behavior when starting with two nodes and the following load patterns: (a) Ascending; (b) Descending; (c) Wave. Non-elastic and elastic

executions are expressed in the upper and the bottom parts, respectively.

16 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.4, NO.1, JANUARY-MARCH 2016
800 800 800
700 . 700 700
600 600 e00000000000suss 600 S -
o o {ITTY el
8500 500 | L LT 8500

5400 5400 . =400

5300 5300 v o300 |~
200 200 *e, 200
100 100 | 100

DONOWUTNOHOAN—-TODNDD 0N O© LW OO~ OWUWTOAN>T™—OD 0N O W OON~NOWUITNHAN—TOODNDONO© O S
Time in Seconds Time in Seconds Time in Seconds
800 800 800
700 ’ 700 \ 700 \ I \
600 |\ ° 600 \— 600 | eeet” Ty e S \

hel =} o o 0

&s00 — Jooos™® 500 ey, & 500 . _.....J" e

5400 soseseenete® 5400 |« 2400 .

o300 T\ °° [[R300) | &300 S f Y
200 .7 © 200 e 200 s 5 .
100 e 100 # . 100 |, = -

3 gCSSEEBREE NGB oS uNB3ISACLBBR8808| CoENEB2S38°5NI8REE
rwﬁvﬁmwr\wm'o_:&lgiuv_)§t rmmvmwhgmmecgggf CRPRBLIBRISSTIIBEDL
Time in Seconds Time in Seconds Time in Seconds
(b) (c)

Allocated e Used

~—— Maximum Threshold

Minimum Threshold

Fig. 9. CPU behavior when starting with four nodes and the following load patterns: (a) Ascending; (b) Descending; (c) Wave. Non-elastic execution

is in the upper part, while elasticity capacity appears in the bottom.

of up to 89 percent of the load when considering the total
amount of available CPU. On the other hand, the architec-
ture is not saturated when using AutoElastic capabilities. In
addition to the gains in the time perspective when starting
with four VMs, AutoElastic also presents better values for
the decision function. The gain in time is not cost prohibi-
tive; thus, elasticity is useful in this context both in terms of
the performance and pay-as-you-go relation.

Fig. 9 illustrates the results with eight VMs in the starting
configuration, running the parallel application. Considering
part (a) of this figure, AutoElastic starts reducing the num-
ber of VMs, remains using six VMs during 1,170 s and com-
pletes the execution again with eight VMs in the most
intensive phase of the application. As presented in Fig. 9b,
in the largest part of the execution, the used load remains
between thresholds 640 and 320, which indicates that there
are no elasticity actions. However, the reduction in the load
occurs tenuously, which implies that the application takes a
long time to reach the minimum threshold. Consequently,
there is a waste of resources, mainly after crossing 900 s. In
this context, a higher value for the minimum threshold
could deallocate resources quickly, optimizing the Resource
as presented in Equation (6). However, adaptable thresh-
olds are not in the scope of this article and are being consid-
ered as future work. In addition, in contrast to Fig. 8, the
start with eight VMs and without addressing the elasticity
implies not crossing the maximum threshold of 80 percent
or a 640 total CPU load. Thus, the execution without AutoE-
lastic capabilities presents moments of underutilization of
resources, but it is not possible to declare that the nodes
were saturated at any time during the execution.

Despite not presenting good results in terms of the execu-
tion time, AutoElastic with eight VMs at the beginning
of the application shows encouraging results when examin-
ing the decision function. In this respect, AutoElastic
obtained a better mark on two out of three values of the
decision function. Auto-adjusting the values of the thresh-
olds (fixed at 80 and 40 percent) should help to control the
waste of resources and to boost more reactive (de)allocation
actions during the load observations, reaching a better tun-
ing of the decision function (to reduce the applications time

using as small an amount of resources as possible). This
work is not in the scope of this article and remains as future
research for the next version of AutoElastic.

4.3.2 Analyzing Asynchronous Elasticity

Table 5 shows the times that are involved in the VM alloca-
tion actions. After analyzing the need for allocation, AutoE-
lastic instantiates a new node (which is composed of two
processors) and two instantiated virtual machines. This
table presents nine moments at which the parallel architec-
ture goes up. Six observations is the result of the average
between observing the need and actually delivering the
VMs for the parallel application. The template to create a
VM for the slave process occupies 700 Mbytes in memory;
hence, 1.4 Gbyte is transferred at each allocation action. On
average, AutoElastic spends 3 min and 36 s to instantiate
the virtual machines. The computation (from the applica-
tions perspective) and communication (from the VM
transferring viewpoint) occur in parallel, near the cloud
computing and HPC panoramas. In previous work we sur-
veyed many elasticity initiatives and showed that the aver-
age time to launch a VM varies from 1 to 10 minutes, so
AutoElastic’s time is enclosed on such an interval [9]. More
precisely, we can define as competitive the AutoElastic’s
time to completely deliver a new VM, where [3] and [6]
showed values close to 10 minutes, while Marshall
et al. [24] obtained 3 min and half for this procedure.

Fig. 10 depicts the impact of the connection and discon-
nection of processes on running slave processes. Each graph
presents two CPUs, each one running a single VM in which
only one slave process is actually running. Fig. 10a shows
that the impact of disconnection is almost null because the
master process closes only the sockets that have the pro-
cesses that belong to the VMs that will be deallocated after-
ward. This part of the figure also shows a growing tendency
toward CPU consumption because now fewer VMs must
take on the application workload. Fig. 10b presents a clear
gap in the CPU utilization of two running processes. In the
allocation action, the master must establish two new con-
nections synchronously. Only after completing this task, the

RIGHI ET AL.: AUTOELASTIC: AUTOMATIC RESOURCE ELASTICITY FOR HIGH PERFORMANCE APPLICATIONS IN THE CLOUD 17

TABLE 5
Analyzing the Time Interval between Detecting the Need to Allocate and the Delivery of 2 VMs at Each Elasticity Action

Instant of Time

Starting Load Index of the observation Time interval
VMs Function Allocation Delivering Allocation Delivering to deliver
of VMs of VMs of VMs of VMs the VMs
Ascending 26 32 752 958 206
52 58 1557 1764 207
4 Descending 4 10 90 295 205
13 20 388 625 237
4 10 91 297 206
Wave 13 19 390 597 207
38 45 1211 1447 236
8 Ascending 42 49 1283 1524 241
Wave 34 40 1007 1214 207
Average 216

The times are expressed in seconds.

master obtains the roll of current processes and can pass a
uniform part of the work for each process. Moreover, it is
possible to observe a short reduction in the CPU usage after
crossing 1770 s because of the workload spread among
more processes after an allocation action.

5 CONCLUSION

Cloud elasticity has been used for scaling traditional web
applications to handle unpredictable workloads, which ena-
bles companies to avoid downfalls that are involved with
fixed provisioning (over- and under-provisioning). Consid-
ering the current scenario, this article addressed cloud elas-
ticity for HPC applications by presenting a model denoted
AutoElastic. In brief, AutoElastic self-organizes the number

100
crui [l
Moment where the master
80
Ed closes the connection to crPU2 -
2 other 2 processes
_D 60 -~ = — -
2 P T
20
0
680 690 700 710
Time in seconds
(a) Impact of VM deallocation in running VMs
100
2 S o T
L -
8 fofrs
) /
O ap ; Moment where the master
establishes the connection
20 with two newer processes | ~pyj 1 -
cruz [
1760 1770 1780 1780

Time in seconds
(b) Impact of VM allocation in running VMs

Fig. 10. Impact in the running processes regarding the disconnection
and connection of other processes of the parallel application: (a) start
with four VMs and wave function; (b) start with four VMs and ascending
function.

of virtual machines without any user intervention, providing
benefits for both the cloud administrator (better energy con-
sumption and resource sharing among the users) and the
cloud user (application performance and overhead when
migrating to the cloud). As the main scientific contribution
to the state-of-the-art in the confluence of cloud and HPC
systems, AutoElastic proposes the use of asynchronism for
elasticity management. This feature implies not blocking the
parallel application while a newly allocated VM is being
transferred, which offers one of the most important capabili-
ties of the cloud without prohibitive costs.

The AutoElastic’'s model for applications matches the
socket-programming style that is offered by MPI-2, in which
new processes can be easily added or removed, connected
and disconnected, from the parallel computation. The eval-
uation demonstrated encouraging results on using the CPU
metric for HPC elasticity. Despite addressing a processing-
intensive application, they revealed that the load does not
always remain close to 100 percent. We measured that the
overhead to double the VMs is on average 3 min and 36 s,
but during this interval, the application continues to execute
normally. Furthermore, the evaluation presented a decision
function that is expressed by multiplying the resource con-
sumption by the performance, where AutoElastic achieved
five positive results on six observations when compared
with a non-elastic execution.

As future work, we concern the study of network and
memory elasticity to employ these capabilities in the next
versions of AutoElastic. We also plan to extend AutoFElastic
to cover divide-and-conquer and bulk-synchronous parallel
applications.

ACKNOWLEDGMENTS

The authors would like to thank to the following Brazilian
agencies: CNPq, CAPES and FAPERGS.

REFERENCES

[11 W. Lin, J. Z. Wang, C. Liang, and D. Qi, “A threshold-based
dynamic resource allocation scheme for cloud computing,” Proce-
dia Eng., vol. 23, pp. 695-703, 2011.

[2] J. Duggan and M. Stonebraker, “Incremental elasticity for array
databases,” in Proc. 2014 ACM SIGMOD Int. Conf. Manag. Data,
2014, pp. 409—-420.

18

[3]

[4]

[5]

[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.4, NO.1,

P. Jamshidi, A. Ahmad, and C. Pahl, “Autonomic resource provi-
sioning for cloud-based software,” in Proc. 9th Int. Symp. Softw.
Eng. Adaptive Self-Manag. Syst., 2014, pp. 95-104.

W. Dawoud, I. Takouna, and C. Meinel, “Elastic VM for cloud
resources provisioning optimization,” in Proc. Adv. Comput.
Commun., 2011, pp. 431-445.

S. Imai, T. Chestna, and C. A. Varela, “Elastic scalable cloud com-
puting using application-level migration,” in Proc. Int. Conf. Utility
Cloud Comput., 2012, pp. 91-98.

M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with dead-
line and budget constraints,” in Proc. 11th IEEEJACM Int. Conf.
Grid Comput., 2010, pp. 41-48.

R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight
resource scaling for cloud applications,” in Proc. IEEE Int. Symp.
Cluster Comput. Grid, 2012, pp. 644-651.

A. Raveendran, T. Bicer, and G. Agrawal, “A framework for elas-
tic execution of existing MPI programs,” in Proc. Int. Symp. Parallel
Dist. Process. Workshops PhD Forum, 2011, pp. 940-947.

G. Galante and L. C. E. d. Bona, “A survey on cloud computing
elasticity,” in Proc. Int. Conf. Utility Cloud Comput., 2012,
pp. 263-270.

A.N. Toosi, R. N. Calheiros, and R. Buyya, “Interconnected cloud
computing environments: Challenges, taxonomy, and survey,”
ACM Comput. Surv., vol. 47, no. 1, pp. 7:1-7:47, 2014.

D. Chiu and G. Agrawal, “Evaluating caching and storage options
on the Amazon Web Services cloud,” in Proc. , 2010 11th IEEE/
ACM Int. Conf. Grid Comput., 2010, pp. 17 -24.

E. Lusk, “MPI-2: Standards beyond the message-passing model,”
in Proc. 3rd Working Conf. Massively Parallel Program. Models, 1997,
pp- 43-49.

D. Rajan, A. Canino, J. A. Izaguirre, and D. Thain, “Converting a
high performance application to an elastic cloud application,”
in Proc. Conf. Cloud Comput. Technol. Sci., 2011, pp. 383-390.

T. Knauth and C. Fetzer, “Scaling non-elastic applications using
virtual machines,” in Proc. IEEE Int. Conf. Cloud Comput., 2011,
pp. 468-475.

K. Kumar, J. Feng, Y. Nimmagadda, and Y.-H. Lu, “Resource allo-
cation for real-time tasks using cloud computing,” in Proc. Int.
Conf. Comp. Comm. Netw., 2011, pp. 1-7.

E. Michon, J. Gossa, and S. Genaud, “Free elasticity and free CPU
power for scientific workloads on IaaS clouds,” in Proc. Int. Conf.
Parallel Distrib. Syst., 2012, pp. 85-92.

K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J.
Shalf, H.]. Wasserman, and N. Wright,, “Performance analysis of
high performance computing applications on the Amazon Web
Services cloud,” in Proc. Int. Conf. Cloud Comput. Technol. Sci.,
2010, pp- 159-168.

B. Wilkinson and C. Allen, Parallel Programming: Techniques and
Applications Using Networked Workstations and Parallel Computers.
Englewood Cliffs, NJ, USA: Pearson/Prentice-Hall, 2005.

A. Tanenbaum, Computer Networks, 4th ed. Upper Saddle River,
NJ, USA: Prentice-Hall, 2003.

D. Milojicic, I. M. Llorente, and R. S. Montero, “Opennebula: A
cloud management tool,” IEEE. Internet Comput., vol. 15, no. 2,
pp- 11 -14, Mar./Apr. 2011.

U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elas-
ticity provisioning system for the cloud,” in Proc. 2011 Int. Conf.
Distrib. Comput. Syst., 2011, pp. 559-570.

A. Lonea, D. Popescu, and O. Prostean,, “A survey of manage-
ment interfaces for Eucalyptus cloud,” in Proc. IEEE Symp. Appl.
Comp. Intell. Inform., 2012, pp. 261-266.

E. Roloff, F. Birck, M. Diener, A. Carissimi, and P. Navaux,
“Evaluating high performance computing on the Windows Azure
platform,” in Proc. IEEE 5th Int. Conf. Cloud Comput., 2012,
pp- 803-810.

P. Marshall, K. Keahey, and T. Freeman, “Elastic Site: Using
clouds to elastically extend site resources,” in Proc. IEEE/ACM Int.
Conf. Cluster, Cloud Grid Comput., 2010, pp. 43-52.

X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang,, “Comparison of
open-source cloud management platforms: Openstack and Open-
nebula,” in Proc. 9th Int. Conf. Fuzzy Syst. Knowl. Discovery, 2012,
pp. 2457-2461.

B. Cai, F. Xu, F. Ye, and W. Zhou, “Research and application of
migrating legacy systems to the private cloud platform with
Cloudstack,” in Proc. IEEE Int. Conf. Autom. Logistics, 2012,
pp. 400-404.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

JANUARY-MARCH 2016

L. Surhone, M. Tennoe, and S. Henssonow, Rightscale.
Saarbriicken, Germany: VDM Publishing, 2010.

T. Fujii and M. Kimura, “Analysis results on productivity varia-
tion in Force.com applications,” in Proc. 6th Int. Conf. Softw. Process
Product Meas., 2011, pp. 314-317.

L. Fu and C. Gondji, “Cloud computing hosting,” in Proc. 3rd IEEE
Int. Conf. Comput. Sci. Inform. Technol., 2010, vol. 3,
pp- 194-198.

R. Costa, F. Brasileiro, G. L. de Souza Filho, and D. M. Sousa, “Just
in time clouds: Enabling highly-elastic public clouds over low
scale amortized resources,” Univ. Federal de Campina Grande,
Campina Grande, Brazil, Tech. Rep., 2010.

Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic
resource scaling for multi-tenant cloud systems,” in Proc. 2nd
ACM Symp. Cloud Comput., 2011, pp. 5:1-5:14.

P. Martin, A. Brown, W. Powley, and]. L. Vazquez-Poletti,
“Autonomic management of elastic services in the cloud,” in Proc.
IEEE Symp. Comput. Commun., 2011, pp. 135-140.

I. Moreno and J. Xu, “Customer-aware resource overallocation to
improve energy efficiency in realtime cloud computing data cen-
ters,” in Proc. IEEE Int. Conf. Service-Oriented Comput. Appl., Dec.
2011, pp. 1-8.

X. Zhang, Z.-Y. Shae, S. Zheng, and H. Jamjoom, “Virtual machine
migration in an over-committed cloud,” in Proc. Netw. Operat.
Manag. Symp., 2012, pp. 196-203.

T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box
and gray-box strategies for virtual machine migration,” in Proc.
4th USENIX Conf. Networked Syst. Design, 2007, pp. 17-23.

L. Beernaert, M. Matos, R. Vilaga, and R. Oliveira, “Automatic
elasticity in openstack,” in Proc. Workshop Secure Dependable Mid-
dleware Cloud Monitoring Manage., 2012, pp. 2:1-2:6.

N.-L. Tran, S. Skhiri, and E. Zimdnyi, “EQS: An elastic and scal-
able message queue for the cloud,” in Proc. IEEE 3rd Int. Conf.
Cloud Comput. Technol. Sci., 2011, pp. 391-398.

B. Suleiman, “Elasticity economics of cloud-based applications,”
in Proc. Int. Conf. Services Comput., 2012, pp. 694-695.

X. Zhang, S. Jeong, A. Kunjithapatham, and S. Gibbs,, “Towards
an elastic application model for augmenting computing capabili-
ties of mobile platforms,” in Proc. 3rd Int. Conf. Mobile Wireless
Middleware, Operat. Syst. Appl., 2010, pp. 161-174.

R. Bryant, A. Tumanov, O. Irzak, A. Scannell, K. Joshi, M.
Hiltunen, A. Lagar-Cavilla, and E. de Lara, “Kaleidoscope: Cloud
micro-elasticity via VM state coloring,” in Proc. Conf. Comput.
Syst., 2011, pp. 273-286.

D. Kumar, Z.-Y. Shae, and H. Jamjoom, “Scheduling batch and
heterogeneous jobs with runtime elasticity in a parallel processing
environment,” in Proc. IEEE 26th Int. Parallel Distrib. Process.
Symp. Workshops PhD Forum, 2012, pp. 65-78.

S. Mariani, H.-L. Truong, G. Copil, A. Omicini, and S. Dustdar,
“Coordination-aware elasticity,” in Proc. 7th IEEEJACM Int. Conf.
utility Cloud Comput., London, U.K., 2014, pp. 56-63.

S. Spinner, S. Kounev, X. Zhu, L. Lu, M. Uysal, A. Holler, and R.
Griffith,, “Runtime vertical scaling of virtualized applications via
online model estimation,” in Proc. Int. Conf. Self-Adaptive Self-Org.
Syst., 2014.

Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and
K. Asanovic,, “Exploring the tradeoffs between programmability
and efficiency in data-parallel accelerators,” in Proc. 38th Annu.
Int. Symp. Comput. Archit., 2011, pp. 129-140.

J. Baliga, R. Ayre, K. Hinton, and R. Tucker, “Green cloud com-
puting: Balancing energy in processing, storage, and transport,”
Proc. IEEE, vol. 99, no. 1, pp. 149-167, Jan. 2011.

M. Comanescu,, “Implementation of time-varying observers used
in direct field orientation of motor drives by trapezoidal integra-
tion,” in Proc. 6th IET Int. Conf. Power Electron. Mach. Drives, 2012,
pp- 1-6, 2012.

Rodrigo da Rosa Righi received the PhD
degree in computer science from the UFRGS
University, Brazil, in 2005. He is assistant profes-
sor and researcher at the University of Vale do
Rio dos Sinos, Brazil. He concluded his postdoc-
toral studies at KAIST—Korea Advanced Institute
of Science and Technology, under the following
topics: RFID and cloud computing. His research
interests include load balancing and process
migration. He is a member of the IEEE and ACM.

Vinicius Facco Rodrigues received the bach-
elor's degree in computer science from Universi-
dade do Vale do Rio dos Sinos in 2012. He
started his master’s degree in applied computing
at the same university in 2014. His research inter-
ests include distributed systems and computer
networks. His research focuses on the topic of
cloud computing and, more specifically, on the
elasticity feature of this new paradigm.

Cristiano André da Costa received the PhD
degree in computer science from UFRGS Univer-
sity, Brazil, in 2008. He is a full professor at the
Universidade do Vale do Rio dos Sinos, Brazil,
and a researcher on productivity at CNPq
(National Council for Scientific and Technological
Development). His research interests include
ubiquitous, mobile, parallel, and distributed com-
puting. He is a member of the ACM, IEEE, IADIS,
and the Brazilian Computer Society.

Guilherme Galante received the bachelor's
degree in informatics from Universidade Estadual
do Oeste do Parana in 2003, the master’s degree
from the Universidade Federal do Rio Grande do
Sul in 2006, and the PhD degree from the Univer-
sidade Federal do Parana in 2014. Since 2006,
he has been a professor in the Computing Sci-
ence undergraduate course at the Universidade
Estadual do Oeste do Parana. His research inter-
ests include computational systems and applied
computing.

RIGHI ET AL.: AUTOELASTIC: AUTOMATIC RESOURCE ELASTICITY FOR HIGH PERFORMANCE APPLICATIONS IN THE CLOUD 19

Luis Carlos Erpen de Bona received the bach-
elor's and master’s degrees in informatics from the
Universidade Federal do Parana in 1999 and 2002,
respectively, and the PhD degree in electric engi-
neering from the same university. He is an adjunct
professor at the Universidade Federal do Parana.
He has experience in computer science, especially
in distributed systems. He acted as a coordinator of
several research technological development proj-
ects, for both national and international perspec-
tives. He is a member of the IEEE.

Tiago Ferreto received the PhD degree in com-
puter science from the Computer Science Depart-
ment, Pontifical Catholic University of Rio Grande
do Sul, Brazil, in 2010, with a Sandwich PhD
Internship at TU-Berlin, Germany, in 2008. He is
associate professor of computer science at the
Pontifical Catholic University of Rio Grande do
Sul, Brazil. He had several publications in presti-
gious conferences and jornals. His research inter-
ests include cloud computing, IT infrastructure
management, and computer networks.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

